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1 Introduction

This version of the first lab is intended only for students who have
already taken Math 2070.

There are two versions of the first lab. This version discusses some special topics and is intended for
students who took Math 2070. If you have not already taken Math 2070, please see Lab 1(a). That version
of the first lab introduces the Matlab environment and programming language, and presents the general
format of the work you need to hand in. Students who take Lab 1(a) will be in no way disadvantaged in
this course because they “missed” Lab 1(b).

Grading policy for this semester has changed. Please refer to the grading section in Lab 1a for details.
This lab is concerned with several different topics. It covers material that is supplemental for students

in Math 2071, but new students will not be shortchanged when they miss this material in favor of the
introductory material presented in Lab 1(a).

The first topic discussed in this lab is a simple approach in a two-dimensional adaptive integration routine
using square mesh elements and an elementary technique for determining which mesh elements need to be
refined in order to meet the error requirements.

The second topic is a demonstration of how roundoff error arises in a matrix calculation.
The third topic is a brief introduction to ordinary differential equations. This topic is also covered in

Lab 1(a) and serves as an introduction to the methods discussed in later labs.
If you prefer, you will find a version of this lab in Adobe pdf format here.

2 Adaptive Quadrature

In this section you will construct a Matlab function to compute the integral of a given mathematical function
over a square region in the plane. One way to do such a task would be to regard the square to be the Cartesian
product of two one-dimensional lines and integrate using a one-dimensional adaptive quadrature routine such
as adaptquad from last semester. Instead, in this lab you will be looking at the square as a region in the
plane and you will be dividing it up into many (square) subregions, computing the integral of the given
function over each subregion, and adding them up to get the integral over the given square.

The basic outline of the method used in this lab is the following:

1. Start with a list containing a single “subregion”: the square region of integration.
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2. Use a Gaußian integration rule to integrate the function over each subregion in the list and estimate
the resulting error of integration. The integral over the whole region is the sum of the integrals over the
subregions, and similarly the estimated error is the sum of the estimated errors over the subregions.

3. If the total estimated error of the integral is small enough, the process is complete. Otherwise, find the
subregion with largest error, replace it with four smaller subregions, and return to the previous step.

The way the notion of a “list” is implemented will introduce a data structure (discussed in detail below)
that is more versatile than arrays or matrices.

Adaptive quadrature is build on quadrature and error estimation on a single (square) element. The
discussion starts there.

2.1 Two-dimensional Gauß quadrature

One simple way of deriving a two-dimensional integration formula over a square is to use iterated integration.
In this case, the square has lower left coordinate (x, y) and side length h, so the square is [x, x+h]× [y, y+h].
Recall that a one-dimensional Gauß integration rule can be written as

∫ x+h

x

f(x)dx ≈
N
∑

n=1

wnf(xn). (1)

Here, N is the index of the rule. For the case N = 2, the points xn are x+ h/2± h/(2
√
3) and the weights

are w1 = w2 = h/2. The degree of precision is 3, and the error is proportional to h5 max |f ′′′′|. (If you look
up the error in a reference somewhere, you will notice that the error is usually given as proportional to h4,
not h5. The extra power of h appearing in (1) comes from the fact that the region of integration is [x, x+h].)
Applying (1) twice, once in the x-direction and once in the y-direction gives

∫ x+h

x

∫ y+h

y

f(x, y)dxdy ≈
N
∑

n=1

M
∑

m=1

wnwmf(xn, ym). (2)

For the case N = M = 2, (2) becomes

∫ x+h

x

∫ y+h

y

f(x, y)dxdy ≈
4

∑

n=1

(h2/4)f(xn, yn), (3)

where the four points (xn, yn) = (x + h/2 ± h/(2
√
3), y + h/2 ± h/(2

√
3)). These are four points based on

the choices of “+” or “−” signs. Numbering the four choices is up to you. The error is O(h6) over his h× h
square, and (3) is exact for monomials xnym with n ≤ 3 and m ≤ 3, and for sums of such monomials. In
the following exercise, you will implement this method in Matlab.

Exercise 1:

(a) Write a Matlab function to compute the integral of a function over a single square element using
(3) with (xn, yn) = (x + h/2 ± h/(2

√
3), y + h/2± h/(2

√
3)). Name the function m-file q elt.m

and have it begin

function q=q_elt(f,x,y,h)

% q=q_elt(f,x,y,h)

% INPUT

% f=???

% x=???

% y=???
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% h=???

% OUTPUT

% q=???

% your name and the date

(b) Test qelt on the functions 1, 4xy, 6x2y, 9x2y2, and 16x3y3 over the square [0, 1]× [0, 1] and show
that the result is exact, up to roundoff.

(c) Test qelt on the function 25x4y4 to see that it is not exact, thus showing the degree of precision
is 3.

2.2 Error estimation

In order to do any sort of adaptive quadrature, you need to be able to estimate the error in one element.
Remember, this is only an estimate because without the true value of the quadrature, you cannot get the
true error.

Suppose you have a square element with side of length h. If you divide it into four sub-squares with sides
of length h/2, then you can compute the quadrature twice: once on the single square with side of length h
and once by adding up the four quadratures over the four squares with sides of length h/2. Consider the
following figure.

h

h
(x, y)

1 2

34

Denote the true integral over this square as q and its approximation over the square with side of length h as
qh. Denote the four approximate integrals over the four squares with sides of length h/2 as q1h/2, q

2
h/2, q

3
h/2,

and q4h/2. Assuming that the fourth derivatives of f are roughly constant over the squares, the following
expressions can be written.

qh = q + Ch6

q1h/2 + q2h/2 + q3h/2 + q4h/2 = q + 4C(h/2)6 = q + (4/64)Ch6. (4)

The second of these is assumed to be more accurate than the first, so use it as the approximate integral,

qapprox = q1h/2 + q2h/2 + q3h/2 + q4h/2. (5)

The system of equations (4) can be solved for the error in qapprox as

error in qaprox =
4

64
Ch6 =

1

15

(

qh − (q1h/2 + q2h/2 + q3h/2 + q4h/2)
)

(6)
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In the following exercise you will write a Matlab function to estimate both the integral and the error over a
single element.

Exercise 2:

(a) Write an m-file named qerr elt.m to estimate the both the integral qapprox in (5) and the error
according to (6). Use q elt.m to evaluate the integrals. qerr elt.m should begin

function [q,errest]=qerr_elt(f,x,y,h)

% [q,errest]=qerr_elt(f,x,y,h)

% more comments

% your name and the date

(b) Use qerr elt to estimate the integral and error for the function 16x3y3 over the square [0, 1]×[0, 1].
Since the exact integral is 1, and the method has degree of precision equal to 3, both the error
estimate and the true error should be zero or roundoff.

(c) Use qerr elt to estimate the integral and error for the function 25x4y4 over the square [0, 1]×[0, 1].
You should observe that the estimated error is within 5% of the true error.

2.3 A versatile data storage method

Up to now all the Matlab programs you have used involved fairly simple ways of storing data, involving
variables, vectors, and matrices. Another valuable programming tool for storing data is the so-called “struc-
ture.” In many programming languages, such as Java, C and C++, it is called a “struct,” in Pascal it is
called a “record,” and in Fortran, it is called a “defined type.” In Matlab, the term “structure” is used,
although everyone will understand if you call it a “struct.”

You can find detailed information about structures in the Matlab online documentation.
A structure consists of several named sub-fields, each containing a value, and separated from the variable

name with a dot. Rather than going into full detail here, consider just the simple concept of a square region
in space, with sides parallel to the coordinate axes. Such a square can be specified with three numerical
quantities: the x and y coordinates of the lower left corner point, and the length of a side. These three
quantities will be called x, y, and h for the purposes of this lab. Thus, if a Matlab (structure) variable named
elt were to refer to the square [−1, 1]× [−1, 1], it could be given as

elt.x=-1;

elt.y=-1;

elt.h=2;

It is important to realize that the value of elt.x is unrelated to the value of x that might appear elsewhere
in a program. For the purpose of this lab, two other quantities will be included in this structure: the
approximate integral of the function over this element, called q, and the estimated error, called errest.

In the following exercises, you will be using a subscripted array (a vector) of structures to implement the
notion of a “list of elements.” Structures can be indexed, and the resulting syntax for the kth entry of the
array of structures named elt would be elt(k). The sub-fields of elt(k) are denoted

elt(k).x

elt(k).y

elt(k).h

elt(k).q

elt(k).errest

Exercise 3: In this exercise you will build up a function that estimates the integral of a function and its
error over a square by choosing an arbitrary integer n, and dividing the square into n2 smaller squares,
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all the same size. The point of this exercise is to introduce you to programming with structures.
Subsequent exercises will not use a uniform division of the square.

(a) Begin a function named q total.m with the following code template and correct the lines with
??? in them. This function is incomplete: it ignores f and always computes the area of the
square, and estimates zero error.

function [q,errest]=q_total(f,x,y,H,n)

% [q,errest]=q_total(f,x,y,H,n)

% more comments

% n=number of intervals along one side

% your name and the date

h=( ??? )/n;

eltCount=0;

for k=1:n

for j=1:n

eltCount=eltCount+1;

elt(eltCount).x= ???

elt(eltCount).y= ???

elt(eltCount).h= ???

elt(eltCount).q= elt(eltCount).h^2; % to be corrected later

elt(eltCount).errest=0; % to be corrected later

end

end

if numel(elt) ~= n^2

error(’q_total: something is wrong!’)

end

q=0;

errest=0;

for k=1:numel(elt);

q=q+elt(k).q;

errest=errest+abs(elt(k).errest);

end

(b) Test the partially-written function q total by choosing any function f (since it is unused so far,
it does not matter) and using it to estimate the integral over the square [0, 1]× [0, 1] using n = 10.
Since it actually is computing the area of the square, you should get 1.0. If you do not, you have
either computed the value of h incorrectly or you have somehow generated the wrong number of
elements. The length of the vector elt should be precisely n2.

(c) As a second test, apply it to the square [−1, 1]× [−1, 1] using n = 13. Again, you should get the
area of the square.

(d) Now that you have some confidence that the code has the correct indexing, use the function
qerr elt to estimate the values of q and errest based on the elemental values of x, y, and h

and place them into elt(elt count).q and elt(elt count).errest.

(e) Estimate the integral and error of the function 9x2y2 over the square [0, 1]× [0, 1] for the value n =
1. If you do not get 1.0 with error estimate 0 or roundoff, you have computed elt(elt count).x

or elt(elt count).y or elt(elt count).h incorrectly or used qerr elt incorrectly. Note:

numel(elt) is precisely 1 in this case.
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(f) Estimate the integral and error of the function 9x2y2 over the square [−1, 1]× [−1, 1] for the value
n = 1. If you do not get 4.0, you have computed elt(elt count).x or elt(elt count).y. If
your estimated error is not zero or roundoff, you have likely used qerr elt incorrectly. Again,
numel(elt) is precisely 1 in this case.

(g) Estimate the integral and error of the function 16x3y3 over the square [0, 1]× [0, 1] for the value
n = 2. If you do not get 1, review your changes to q total.m carefully.

(h) Fill in the following table for the integral of the function 25x4y4 over the square [0, 1]× [0, 1].

n integral estimated error true error

2 ________ ____________ __________

4 ________ ____________ __________

8 ________ ____________ __________

16 ________ ____________ __________

(i) Are your results consistent with the global order of accuracy of O(h4)?

In order to further test the integration and error estimation, a more complicated function is needed. One
function that is neither too easy nor too hard to integrate is the following function.

f(x, y) =
1

√

1 + 100x2 + 100(y − 0.5)2
+

1
√

1 + 100(x+ 0.5)2 + 100(y + 0.5)2
+

1
√

1 + 100(x− 0.5)2 + 100(y + 0.5)2

This function has three peaks on the square [−1, 1] × [−1, 1]: two at (±0.5,−0.5) and one at (0, 0.5). Its
integral over the square [−1, 1]× [−1, 1] is 1.755223755917299. Matlab code to effect this function is:

function z=three_peaks(x,y)

% z=three_peaks(x,y)

% three peaks at (-.5,-.5), (+.5,-.5), (0,.5)

% the integral of this function over

% [-1,1]X[-1,1] is 1.75522375591726

z=1./sqrt(1+ 100*(x+0.5).^2+ 100*(y+0.5).^2)+ ...

1./sqrt(1+ 100*(x-0.5).^2+ 100*(y+0.5).^2)+ ...

1./sqrt(1+ 100*(x ).^2+ 100*(y-0.5).^2);

A perspective plot of the function is:
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Exercise 4:

(a) Use cut-and-paste to copy the above code to a function m-file named three peaks.m.

(b) Integrate three peaks over the square [−1, 1] × [−1, 1] using q total and fill in the following
table. The true value of the integral is 1.755223755917299. Warning: the larger values of n may
take some time—be patient.

n integral estimated error true error

10 ________ ____________ __________

20 ________ ____________ __________

40 ________ ____________ __________

80 ________ ____________ __________

160 ________ ____________ __________

(c) Are the true error values consistent with the convergence rate of O(h4)?

(d) Notice that the estimated errors are much larger than the true errors, especially for larger values of
n. This is because the elemental errors are sometimes positive and sometimes negative and should
cancel each other, but we take absolute values in the code for q total. Make a copy of q total.m

called q total noabs.m and remove the absolute value from the summation of the elemental error
estimates. Using q total noabs, compute the integral of three peaks over [−1, 1]× [−1, 1] using
n = 80. You should observe that the true and estimated errors agree within 0.1%. Nonetheless,
use of absolute value is adequate for smaller values of n and is more conservative in all cases.

2.4 An adaptive strategy

The objective of this discussion of quadrature is to present an adaptive strategy for quadrature. You have
seen all the pieces and now it is time to put them together. In this strategy, a vector of structures similar
to the one used in q total will be used, but the way it is used is very different. The strategy in q total

results in a large number of uniformly-sized squares filling out the unit square. The adaptive stratgy below
will result in a smaller number of squares of differing sizes. Small squares will be used only where they are
needed to achieve accuracy. The adaptive strategy used here is the following.

1. Start with a vector named elt of structures similar to the one used in q total above. This vector will
have only one subscript:
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elt(1).x

elt(1).y

elt(1).h

elt(1).q

elt(1).errest

and the values represent the given square region over which the integral is to be taken, with elt(1).q

and elt(1).errest computed using qerr elt.

2. Add up all the elemental values of q and absolute values of errest to get the total q and errest. If
errest is smaller than the tolerance, stop and return the values of q and errest.

3. If the total estimated error of the integral is too large, find the value of k for which abs(elt(k).errest)
is largest and divide it into four subregions.

4. Replace elt(k) with values from the upper right of the four smaller square subelements. You can use
code similar to the following.

x=elt(k).x;

y=elt(k).y;

h=elt(k).h;

% new values for this element

elt(k).x=x+h/2;

elt(k).y=y+h/2;

elt(k).h=h/2;

[elt(k).q, elt(k).errest]=qerr_elt( ??? )

5. Add three more elements to the vector of elements using code similar to the following for each one.

K=numel(elt);

elt(K+1).x= ???

elt(K+1).y= ???

elt(K+1).h=h/2;

[elt(K+1).q, elt(K+1).errest]=qerr_elt( ??? )

6. Go back to the second step above.

Exercise 5:

(a) Write a Matlab function m-file named q adaptive.m that implements the preceeding algorithm.
Your function could use the following outline.

function [q,errest,elt]=q_adaptive(f,x,y,H,tolerance)

% [q,errest,elt]=q_adaptive(f,x,y,H,tolerance)

% more comments

% your name and the date

MAX_PASSES=500;

% initialize elt

elt(1).x=???

??? more code ???
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for passes=1:MAX_PASSES

% compute q by adding up elemental values

% and compute errest by adding up absolute elemental values

% use a loop for this because the "sum" function doesn’t

% work for structures.

??? more code ???

% if error meets tolerance, return

??? more code ???

% use a loop to find the element with largest abs(errest)

??? more code ???

% replace that element with a quarter-sized element

??? more code ???

% add three more quarter-sized elements

??? more code ???

end

error(’q_adaptive convergence failure.’);

(b) Test q adaptive by computing the integral of the function 16x3y3 over the square [0, 1] × [0, 1]
to a tolerance of 1.e-3. The result should be exactly correct because the degree of precision is 3,
and numel(elt) should be 1.

(c) Test q adaptive by computing the integral of the function 9x2y2 over the square [−1, 1]× [−1, 1]
to a tolerance of 1.e-3. The result should be exactly 4 because the degree of precision is 3, and
numel(elt) should be 1.

(d) Test q adaptive by computing the integral of the function 25x4y4 over the square [0, 1] × [0, 1]
to a tolerance of 1.e-3. You should see that numel(elt) is precisely 4 because only a single
refinement pass was required.

If you do not get the correct length, you can debug by temporarily setting MAX PASSES=2

in the code and look at qelt. Is numel(qelt) equal to 4? If not, look at the coordinates of each
of the elements in elt. There should be no duplicates or omissions. When you have corrected
your error, do not forget to reset MAX PASSES=500

(e) Test q adaptive by computing the integral of the function 25x4y4 over the square [0, 1]×[0, 1] to a
tolerance of 2.e-4. You should see that numel(elt) is precisely 7 because two refinement passes
were required, with the unit square broken into four subsquares and the upper right subsquare
itself broken into four.

In the following exercise you will see how the adaptive strategy worked.

Exercise 6:

(a) Download a plotting function plotelt.m that displays the elements. Elements colored green have
small estimated error, elements colored amber have mid-sized error estimates and elements colored
red have the largest error estimates. Red elements are candidates for the next mesh refinement.

(b) Use q adaptive to estimate the integral of the function 25x4y4 over the square [0, 1] × [0, 1] to
an accuracy of 1.e-6. What are the integral, the estimated error, and the true error? How many
elements were used? You should observe that the exact and estimated errors are close in size.

9



(c) Use plotelt to plot the final mesh used. Please include a copy of this plot when you send me
your work.

(d) Again estimate the integral of 25x4y4 over the square [0, 1] × [0, 1], but to an accuracy of 9.e-7,
smaller than before. You should observe that the two large red blocks near but not touching the
origin have been refined. Plot the resulting mesh, and include a copy with your summary.

(e) Again estimate the integral of 25x4y4 over the square [0, 1] × [0, 1], but to an accuracy of 5.e-7.
You can see that the red elements have been refined, green ones were not refined, and the worst
remaining elements are in different places.

Exercise 7: Use q adaptive to estimate the integral and error of the function three peaks over the
square [−1, 1]× [−1, 1] to a tolerance of 1.e-5. Include the result, the estimated error, the true error,
and the number of mesh elements (numel(elt)) with your summary. Plot the resulting mesh and
include plot with your summary.

You should be able to see from the plot that elements near the peaks themselves have been refined,
but also elements in the areas between the peaks.

3 Roundoff errors

Last term you saw some effects of roundoff errors. Later in this term you will look at roundoff errors again.
Right now, though, is a good time to look at how some roundoff errors come about.

In the exercise below we will have occasion to use a special matrix called the Frank matrix. Row k of
the n× n Frank matrix has the formula:

Ak,j =







0 for j < k − 2
n+ 1− k for j = k − 1
n+ 1− j for j ≥ k

The Frank matrix for n = 5 looks like:












5 4 3 2 1
4 4 3 2 1
0 3 3 2 1
0 0 2 2 1
0 0 0 1 1













The determinant of the Frank matrix is 1, but is difficult to compute numerically. This matrix has a special
form called Hessenberg form wherein all elements below the first subdiagonal are zero. Matlab provides
the Frank matrix in its “gallery” of matrices, gallery(’frank’,n), but we will use an m-file frank.m.
The inverse of the Frank matrix also consists of integer entries and an m-file for it can be downloaded as
frank inv.m. You can find more information about the Frank matrix from the Matrix Market, and the
references therein.

Exercise 8: Let’s look carefully at the Frank matrix and its inverse. For convenience, define A to be
the Frank matrix of order 6, and Ainv its inverse, computed using frank and frank inv, respectively.
Similarly, let B and Binv be the Frank matrix of order 24 and its inverse. Do not use the Matlab inv

function for this exercise! You know that both A*Ainv and B*Binv should equal the identity matrices
of order 6 and 24 respectively.

(a) What is the result of A*Ainv?

(b) What is the upper left 5 × 5 square of C=B*Binv? You should see that C is not a portion of the
identity matrix. What appears to be a mistake is actually the result of roundoff errors.

(c) To see what is going on, let’s just look at the top left entry. Compute
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A(1,:)*Ainv(:,1)= __________

B(1,:)*Binv(:,1)= __________

Both of these answers should equal 1. The first does and the second does not.

(d) To see what goes right, compute the terms:

A(1,6)*Ainv(6,1)= __________

A(1,5)*Ainv(5,1)= __________

A(1,4)*Ainv(4,1)= __________

A(1,3)*Ainv(3,1)= __________

A(1,2)*Ainv(2,1)= __________

A(1,1)*Ainv(1,1)= __________

sum = __________

Note that the signs alternate, so that when you add them up, each term tends to cancel part of
the preceeding term.

(e) Now, to see what goes wrong, compute the terms:

B(1,24)*Binv(24,1)= __________

B(1,23)*Binv(23,1)= __________

B(1,22)*Binv(22,1)= __________

B(1,21)*Binv(21,1)= __________

B(1,20)*Binv(20,1)= __________

B(1,16)*Binv(16,1)= __________

B(1,11)*Binv(11,1)= __________

B(1,6) *Binv(6,1) = __________

B(1,1) *Binv(1,1) = __________

You can see what happens to the sum. The first few terms are huge compared with the correct value
of 1. Matlab uses 64-bit floating point numbers, so you can only rely on the first thirteen or fourteen
significant digits in numbers like B(1,24)*Binv(24,1). Further, they are of opposing signs so that
there is extensive cancellation. There simply are not enough bits in the calculation to get anything
like the correct answer.

Remark: It would not have been productive to compute each of the products B(1,k)*Binv(k,1) for
each k, so I had you do the five largest and then sampled the rest. I chose to sample the terms with
an odd-sized interval between adjacent terms. Had I chosen an even interval–say every other term–the
alternating sign pattern would have been obscured. When you are sampling errors or residuals for any

reason, never take every other term!)

4 Ordinary differential equations

In this section you will see a brief introduction to solving differential equations.
In general, a first-order ordinary differential equation can be written in the form

y′ = f(x, y) (7)

where y′ = dy
dx . Such an equation needs an initial condition y(x0) = y0. Perhaps the simplest method for

numerically finding a solution of (7) is to use the “explicit Euler” method wherein a discrete selection of points
xk = x0+h(k−1) where h is some fixed step size and k = 1, 2, 3, . . . . Writing the approximate value of y(xk)
as yk, then Euler’s explicit method can be derived by approximating the derivative (y′)k ≈ (yk+1 − yk)/h
and writing

yk+1 = yk + hf(xk, yk) (8)
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The differential equation
y′ = −y + sinx

with initial condition y(0) = 0 has an exact solution y(x) = .5(e−x+sinx−cosx). It also has an approximate
numerical solution defined by Euler’s formula as

yk+1 = yk + h(−yk + sinxk). (9)

In some sense, y(xk+1) ≈ yk+1 We are going to look at how this expression evolves for x > 0.

Exercise 9: Copy the following text into a file named exer9.m and then answer the questions about
the code.

function error=exer9(nsteps)

% error=exer9(nsteps)

% compute the solution of the differential equation

% y’+y=sin(x)

% starting at y=0 at x=0 using Euler’s method

% and ending at x=25

% nsteps=number of steps taken

% Your name and the date

FINAL_TIME=25.0;

stepsize=FINAL_TIME/nsteps;

clear x y exactSolution

y(1)=0;

x(1)=0;

exactSolution(1)=0;

for k=1:nsteps

x(k+1)=x(k)+stepsize;

y(k+1)=y(k)+stepsize*(-y(k)+sin(x(k)));

exactSolution(k+1)=.5*(exp(-x(k+1))+sin(x(k+1))-cos(x(k+1)));

end

plot(x,y); % default line color is blue

hold on

plot(x,exactSolution,’g’); % g for green line

legend(’Euler solution’,’Exact solution’)

hold off

error=norm(y-exactSolution)/norm(exactSolution);

(a) Add your name and the date to the comments at the beginning of the file.

(b) Run exer9 with nsteps=160. You can see that the approximate and exact solutions are quite
close. Please include this plot with your summary.

(c) Run exer9 with nsteps=10. You can see that the approximate and exact solutions are not close
and are diverging from each other rapidly. Please include this plot with your summary.

(d) Fill in the following table using exer9.

nsteps error ratio

10 _________ _______

20 _________ _______
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40 _________ _______

80 _________ _______

160 _________ _______

The convergence rate should be O((nsteps)−p) for some integer p. What is your estimate of p?

5 Extra Credit (8 points)

You saw in Section 3 how roundoff errors can be generated by adding numbers of opposite sign together. It
is also possible to generate roundoff by adding small numbers to large numbers, without sign changes. This
mechanism is not so dramatic as errors introduced by subtraction. In the following exercise, you will see
how roundoff errors can ge generated by adding small numbers to large numbers and how roundoff can be
mitigated by grouping the smaller numbers together.

For this exercise, it will be convenient to use single precision (32 bit) numbers rather than the usual
double precision (64 bit) numbers. This will show the effects of roundoff when using a much smaller number
of terms in the sum used below, resulting in much less time in accumulating the sums.

Single precision numbers have only about eight significant digits, in contrast to double precision numbers,
which have about fifteen significant digits.

The Matlab function single(x) returns a single precision version of its argument x. Once single precision
numbers s1 and s2 have been generated, they can be added (in single precision) in the usual manner
(s3=s1+s2), and the variable s3 will automatically be a single precision variable. Even when another
variable is a default (double) precision number, adding it to or multiplying it by a single precision number
results in a single precision number.
Warning: For those who have programmed in other languages, adding a single precision number to a double
precision number in Fortran or C results in a double precision value, not single precision. Take care when
mixing precisions in arithmetic statements.

Exercise 10: You probably have seen the formula for the sum of a geometric series.

N
∑

n=0

xn =
1− xN+1

1− x
. (10)

Suppose that x=0.9999 and N=100000 (105).

(a) Define a single precision variable x=single(0.9999).

(b) Compute the sum of the series 10 using the formula on the right. Call this value S.

(c) Write a loop to accumulate the sum of the series (10) by adding up the terms on the left. Call
this value a.

(d) Write a loop to accumulate the sum of the series (10) by adding up the terms on the left in reverse

order (for n=N:-1:0). Call this value b.

(e) Using format long, how many digits of a agree with those of S? How many digits of b agree
with those of S? You should find that b is substantially closer to S than a.

(f) Compute the relative errors abs((a-S)/S) and abs((b-S)/S). You should find that the error in
a is more than 100 times the error in b.

(g) To see where the error comes from, compute the sum a1000 for N = 1000 terms. What is a1000?
What is the value of the next term in the series, x1001? When you add x1001 to a1000, there are
only 8 digits of accuracy available, so about four digits of the term x1001 are lost in performing
the sum! Keeping this kind of loss up for thousands of terms is the source of inaccuracy.

(h) Look at the reversed sum for b. In your own words, explain why roundoff error is so much smaller
in this case.
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