In Lab 4, Exercise 9, FEM with quadratic shape fns in 1d is used to solve a Dirichlet BVP on [0,1]: y''+y'+y=x*(1-x). Mesh is uniform. Using inf-norm, convergence table is: N h error ratio 7 1.2500e-1 7.2202e-06 15.460 15 6.2500e-2 4.6703e-07 15.788 31 3.1250e-2 2.9581e-08 14.013 61 1.6129e-2 2.1110e-09 14.951 121 8.1967e-3 1.4119e-10 Question: 1. Why is progression of ratios not better? 2. Why is convergence quadratic? Theory says cubic, but mesh is uniform... Re-wrote code using Fortran. Re-did convergence table using L2 norm. N= 7 err= 2.2508E-05 ratio= 15.854 N= 15 err= 1.4197E-06 ratio= 15.963 N= 31 err= 8.8941E-08 ratio= 14.084 N= 61 err= 6.3151E-09 ratio= 14.990 N= 121 err= 4.2128E-10 ratio= 15.481 N= 241 err= 2.7212E-11 ratio= 15.737 N= 481 err= 1.7292E-12 ratio= 15.868 N= 961 err= 1.0897E-13 ratio= 15.934 N= 1921 err= 6.8395E-15 ratio= 15.967 N= 3841 err= 4.2836E-16 ratio= 15.983 N= 7681 err= 2.6800E-17 Convergence rate is cleanly approaching 16 Modified mesh by introducing a %(dx) random perturbation to each node. 5% 5% 0.1% N= 7 err= 2.2442E-05 ratio= 7.6263 N= 15 err= 2.9427E-06 ratio= 10.2754 16.0980 N= 31 err= 2.8638E-07 ratio= 8.3182 14.3410 N= 61 err= 3.4429E-08 ratio= 7.1949 13.7633 N= 121 err= 4.7852E-09 ratio= 7.5066 14.7297 N= 241 err= 6.3747E-10 ratio= 8.1147 12.7187 N= 481 err= 7.8557E-11 ratio= 7.1617 10.4981 N= 961 err= 1.0969E-11 ratio= 7.9580 8.0792 N= 1921 err= 1.3783E-12 ratio= 8.0216 8.1620 N= 3841 err= 1.7182E-13 Why Fortran? Supports colon notation and quad-precision.