Quadrature: The Trapezoid rule
 MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/~jburkardt/classes/math2070_2019/quadrature_trapezoid/quadrature_trapezoid.pdf

Trapezoids are not just for approximate integration! (Pittsburgh's PNC Tower)

Trapezoidal quadrature
Given a continuous function $f(x)$, and a domain $a \leq x \leq b$, estimate $I(f, a, b) \equiv \int_{a}^{b} f(x) d x$ using one or more trapezoids.

1 An estimate using one trapezoid

Suppose we want to estimate the integral $I(f, a, b)$ of a function $f(x)$ over the interval $[a, b]$, using a limited number of sample values. The trapezoid rule suggests the following approximation $T(f, a, b)$:

$$
I(f, a, b) \approx T(f, a, b)=(b-a) *(f(a)+f(b)) / 2
$$

It is not hard to see that this approximation is exact if the function $f(x)$ happens to be a constant or linear function. Otherwise, we know from our polynomial approximation result that we can compare $f(x)$ to the linear interpolant $p_{2}(x)$

$$
f(x)-p_{2}(x)=\frac{f^{\prime \prime}(\xi)}{3!}(x-a)(x-b) \text { for some } \xi \in[a, b]
$$

and this implies, after integration, that

$$
I(f, a, b)-T(f, a, b)=\frac{f^{\prime \prime}(\xi)}{12}(b-a)^{3}
$$

This suggests that, for a fixed function $f(x)$, the quadrature error decreases cubically as $(b-a)$ decreases.

2 Example: Does the error drop cubically with interval size?

To verify the error behavior, we compare the exact and estimated integrals of $\int_{x 1}^{x 2} \exp (x) d x$ as we repeatedly halve the size of the interval. In this case, we expect that at each step, the error will decrease by a factor $r=\frac{1}{8}=0.125$.

Listing 1: Output from decrease_h.m

3 Estimate the error using two trapezoids

Let the notation $T 2(f, a, b)$ indicate that we are approximating the integral of $f(x)$ over $[a, b]$ using two trapezoids. Define $x_{0}=a, x_{1}=\frac{a+b}{2}, x_{2}=b$, and write

$$
\begin{aligned}
T 2(f, a, b) & =T 1\left(f, x_{0}, x_{1}\right)+T 1\left(f, x_{1}, x_{2}\right) \\
& =\frac{\left(x_{1}-x_{0}\right)}{2} *\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)+\frac{\left(x_{2}-x_{1}\right)}{2} *\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) \\
& =\left(x_{2}-x_{0}\right) *\left(\frac{1}{2} f\left(x_{0}\right)+f\left(x_{1}\right)+\frac{1}{2} f\left(x_{2}\right)\right) / 2
\end{aligned}
$$

We could estimate quadrature error as the difference

$$
E(f, a, b, T 1)=\int_{a}^{b} f(x) d x-T 1(f, a, b) \approx T 2(f, a, b)-T 1(f, a, b)
$$

but, as explained in Professor Layton's notes, more accurate estimates are:

$$
\begin{aligned}
& E 1(f, a, b, T 1)=\int_{a}^{b} f(x) d x-T 1(f, a, b) \approx e 1=\frac{4}{3} *(T 2(f, a, b)-T 1(f, a, b)) \\
& E 2(f, a, b, T 2)=\int_{a}^{b} f(x) d x-T 2(f, a, b) \approx e 2=\frac{1}{3} *(T 2(f, a, b)-T 1(f, a, b))
\end{aligned}
$$

which reflects the expectation that using two trapezoids of half the width (T2) produces an estimate whose error is reduced by a factor of $\frac{1}{4}$ from the T1 estimate.

4 Example: Estimating the error

Consider again the problem of estimating the quadrature error when we are approximating $\int_{a}^{b} \exp (x) d x$ using $T 1(f, a, b)$. Let E1, E2 represent the exact errors in T1 ($\mathrm{f}, \mathrm{a}, \mathrm{b}$) and $\mathrm{T} 2(\mathrm{f}, \mathrm{a}, \mathrm{b})$, and let e1, e2 stand for the corresponding error estimates. For a variety of values of $[a, b]$, we compute and compare the true and estimated errors:

a	b	E 1	e 1	E 2	e 2
0.00	0.20	-0.000738	-0.000737	-0.000184	-0.000184
0.10	0.40	-0.002896	-0.002894	-0.000725	-0.000724
0.20	0.60	-0.007988	-0.007983	-0.002001	-0.001996
0.30	0.80	-0.018168	-0.018149	-0.004556	-0.004537
0.40	1.00	-0.036575	-0.036520	-0.009185	-0.009130
0.50	1.20	-0.067698	-0.067560	-0.017027	-0.016890
0.60	1.40	-0.117846	-0.117535	-0.029695	-0.029384
0.70	1.60	-0.195774	-0.195120	-0.049434	-0.048780
0.80	1.80	-0.313488	-0.312198	-0.079339	-0.078050
0.90	2.00	-0.487310	-0.484891	-0.123641	-0.121223

Listing 2: Output from t2_minus_t1.m

5 Using n trapezoids

It should be clear that the two trapezoid integral estimate is likely to be more accurate than when only one trapezoid is used, since the error estimate drops by a factor of 4 . This suggests that we might be able to get further error reductions by repeatedly doubling the number of trapezoids. When a quadrature rule is used to estimate an integral by dividing it into subintervals and summing the integral estimates, this is known as a composite rule. For the trapezoid rule that uses $n+1$ equally spaced points $x_{0}, x_{1}, \ldots, x_{n}$, (and hence n trapezoids), the rule $\operatorname{Tn}(\mathrm{f}, \mathrm{a}, \mathrm{b})$ can be written simply as:

$$
I(f, a, b) \approx \operatorname{Tn}(f, a, b)=(b-a) \cdot\left(0.5 * f\left(x_{0}\right)+f\left(x_{1}\right)+\ldots+f\left(x_{n-1}\right)+0.5 * f\left(x_{n}\right)\right) / n
$$

The first factor represents the width of the interval. The second represents an estimated average value for $f(x)$ over that interval. This means that the coefficients of the sample values of $f(x)$ should add up to 1 .

6 Exercise: A Composite trapezoid rule

Use a trapezoid rule T 8 to estimate the integral of the hump() function over the interval $[0,2]$. Use the following pseudocode as a guide.

```
a}=0.
b}=2.
n = 8
x = n+1 equally spaced values between a and b
q = 0.5 * fhumpx (1))
loop2 i = 2 to n
    q}=\textrm{q}+\operatorname{hump ( x (i) )
end loop2
q}=\textrm{q}+0.5*\operatorname{hump}(x(n+1)
q}=(\textrm{b}-\textrm{a})*\textrm{q}/\textrm{n
e = hump_int(a,b) - q
```

Listing 3: Pseudocode for T8 quadrature of hump().

7 Exercise: A Sequence of composite trapezoid rules

Use a sequence of trapezoid rules $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 4, \ldots, \mathrm{~T} 1024$ to estimate the integral of the hump() function over the interval $[0,2]$. Use the following pseudocode as a guide.

```
a}=
b}=
q}=
loop1 nlog = 0 to 10
    n = 2^nlog
    qold = q
    x = n + 1 equally spaced values between a and b
    q}=0.5*f(x(1)
    loop2 i = 2 to n
        q = q + f ( x (i) )
    end loop2
    q}=\textrm{q}+0.5*\textrm{f}(\textrm{x}(\textrm{n}+1)
    q}=(\textrm{b}-\textrm{a})*q/\textrm{n
    e = hump_int(a,b) - q
    print n, q, e
end loop1
```

Listing 4: Pseudocode for sequence of trapezoid quadratures of hump().
Here's how your output should start:

n	Tn (hump, a, b)	Error
1	0.3212981744421901	29
2	16.16064908722109	13.17
4	16.17515212981744	13.15
\ldots	\cdots	\cdots
1024	$?$	$?$

Listing 5: First three results for hump_trap.m.

8 An algorithm for adaptive integral estimation

By comparing $\mathrm{T} 1(\mathrm{f}, \mathrm{a}, \mathrm{b})$ and $\mathrm{T} 2(\mathrm{f}, \mathrm{a}, \mathrm{b})$, we can estimate the quadrature error that we make. Suppose that we wish to estimate the integral of f over an interval $[a, b]$ with an error of no more than tol. We can do so adaptively, by breaking the interval up into a sequence of subintervals. But rather than being equal subintervals, we start at the left endpoint, and consider a "small" interval of width h, setting $x_{0}=a, x_{1}=$ $a+h / 2, x_{2}=x_{0}+h$. If the error estimate for $T 2\left(f, x_{0}, x_{2}\right)$ is more than $\frac{t o l * h}{b-a}$, we cut h in half and retry the step. If it is less than $\frac{t o l * h}{b-a}$, we add this to our running estimate for the integral and prepare for the next step. If the error estimate is less than $\frac{8 * t o l * h}{b-a}$, we are actually justified in trying a stepsize of $2 * h$ on the next step, otherwise we use h again.

A version of such an adaptive quadrature scheme was discussed in class.

9 Pseudocode for adaptive trapezoid quadrature

```
pseudocode for adaptive quadrature
% Set a small initial h
h = ( b - a ) / 100.0
n = 0
q = 0.0
x0 = a
```

```
Loop1 to estimate integral from x0 to x0 + h
    if b <= x0 exit with success
% Estimate the integral and the error.
% If the error is small enough, accept the estimate, and advance x0.
% Otherwise, decrease h and try again.
%
    Loop2 to reduce h if necessary
        if n_max <= n ) exit with error
    % Don't go past b!
        if ( b < x0 + h )
            h = ( b - x0 )
            x1 = x0 + h / 2.0
            x2 = b
        else
            x1 = x0 + h / 2.0
            x2 = x0 + h
% Compute integral and error estimates using 1 and 2 trapezoids.
        q1 = h* f(x0) f f x2) ) / 2.0
        q2 = h * ( 0.5 * f(x0) + f(x1) + 0.5 * f(x2) ) / 2.0
        e1 = abs ( 4.0 * ( q2 - q1 ) / 3.0 )
        e2 = abs ( ( q2 - q1 ) / 3.0 )
    % Decide if h can be increased, or is about right, or needs to be reduced.
        if (8.0 * e2<= tol * h / ( b - a ) )
            h}=\textrm{h}*2.
            q}=\textrm{q}+\textrm{q}
            x0 = x2
            n = n + 1
            break
        elseif ( e2<= tol * h / ( b - a ) )
            h}=\textrm{h
            q}=\textrm{q}+\textrm{q}
            x0 = x2
            n}=\textrm{n}+
            break
        else
            h = h / 2.0
            if h too small then exit error
        end loop1
    end loop2
end
```


10 Example: Adaptive quadrature of hump() over [0,2]

Consider the quadrature of the $\operatorname{hump}()$ function. The function has a very sharp variation in $[0.2,0.4]$ and a mild variation in $[0.6,1.1]$. We can imagine that the trapezoid rule would have some trouble around these bending areas. When we run a simple version of the adaptive code, we get a good estimate for the integral, and we can see that the program took smaller steps in the problem areas.

1 hump_adapt:

```
Use adaptive trapezoid integration to estimate
    the integral of hump(x) from 0 to 2
At x0 = 0.02, try smaller h = 0.01
At x0 = 0.12, try smaller h = 0.005
At x0 = 0.245, try bigger h = 0.01
At x0 = 0.245, try smaller h = 0.005
At x0 = 0.265, try smaller h = 0.0025
At x0 = 0.3475, try bigger h = 0.005
At x0 = 0.3575, try bigger h = 0.01
At x0 = 0.3675, try smaller h = 0.005
At x0 = 0.5425, try bigger h = 0.01
At x0 = 0.7725, try bigger h = 0.02
At x0 = 0.8325, try smaller h = 0.01
At x0 = 0.9925, try bigger h = 0.02
At x0 = 1.3925, try bigger h = 0.04
At x0 = 1.6725, try bigger h = 0.08
At x0 = 2, try bigger h = 0.015
Number of subintervals = 185
Integral estimate = 29.3281
Exact integral = 29.3262
Error = 0.00190283
Error tolerance = 0.01
```

Listing 6: Output from hump_adapt.m
Although the adaptivity seemed to work reasonably well for hump(), the adaptivity would be much more necessary in cases where $f(x)$ was highly oscillatory, so that the curve cannot be well approximated by straight line segments unless they are very small.

11 Assignment \#7

Consider the function

$$
f(x)=e^{x} \sin (x)
$$

over the interval $[a, b]=[0,2 \pi]$.
Write a program $h w^{7}$. m which

1. Uses trapezoid rules $T n(f, a, b)$ of order $n=2^{n \log }$ for $n \log =0,1,2, \ldots, 10$ to estimate the integral $I(f, a, b)$;
2. Evaluates the error $\operatorname{En}(f, a, b)=I(f, a, b)-\operatorname{Tn}(f, a, b)$ (Work out the formula for $I(f, a, b)$!);
3. Prints $n, \operatorname{Tn}(f, a, b), \operatorname{En}(f, a, b)$ for the 11 values of n;

Turn in: your file $h w 7 . m$ by Friday, October 11.

