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Gauss advocates an adaptive approach to life.

Quadrature Using Gauss Rules

Estimate I(f, a, b) ≡
∫ b
a
f(x) dx using an n-point Gauss rule Gn(f, a, b) =

∑n
i=1 ρi f(ξi)

1 Gauss Quadrature Rules

While it may seem natural to use equally spaced sample points in the Newton-Cotes rules, this results in
two disadvantages:

• these rules only achieve about half the precision possible;
• as n increases, half the weights become negative, and all large, so that the rule becomes unstable

(significant loss of accuracy);

Gauss quadrature rules specify both the sample points and the weights; by doing so they essentially double
the accuracy obtained by Newton-Cotes, and completely avoid the instability problem.

The table below lists points and weights for the first 4 Gauss rules. You should notice some interesting
patterns in this table.
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i ξ ρ
n = 1

1 0.0 2.0
n = 2

1 -0.57735026 1.0
2 +0.57735026 1.0

n = 3
1 -0.77459666 0.55555555
2 0.00000000 0.88888888
3 0.77459666 0.55555555

n = 4
1 -0.86113631 0.34785484
2 -0.33998104 0.65214515
3 +0.77459666 0.65214515
4 +0.86113631 0.34785484

2 Exercise: Verify properties of Gauss Rules

A Gauss rule of order n consists of n abscissas ξi and n weights ρi, such that:

1. Each ξi satisfies −1 < ξi < 1, ξi = −ξn+1−i, and
∑
ξi = 0;

2. Each ρi satisfies 0 < ρi, ρi = ρn+1−i, and
∑
ρi = 2;

3. I(f,−1,+1) ≈ Gn(f,−1,+1) ≡
∑
ρif(ξi);

4. I(f,−1,+1) = Gn(f,−1,+1) exactly, if f(x) is any polynomial of degree 2n− 1 or less;

The function [ xi, rho ] = gauss ( n ) returns the points and weights of an n-point Gauss quadrature
rule Gn(f,−1,+1). We can use this function to verify some of the properties for a particular value of n:

1 n = 7
2 [ xi , rho ] = gauss ( n )
3
4 xi sum = sum ( x i )
5 rho sum = sum ( rho )
6 xi sym = xi ( 1 : n ) + x i (n :−1:1)
7 rho sym = rho ( 1 : n) − rho (n :−1 ,1)
8
9 f = @(x ) cos ( x ) ;

10 f a n t i = @(x ) sin ( x ) ;
11 gn = rho ’ ∗ f ( x i )
12 in = f a n t i (+1.0) − f a n t i (−1.0)
13
14 f = @(x ) 13∗x.ˆ12−6∗x.ˆ5+5∗x .ˆ4−7;
15 f a n t i = @(x ) x.ˆ13−x.ˆ6+x.ˆ5−7∗x ;
16 gn = rho ’ ∗ f ( x i )
17 in = f a n t i (+1.0) − f a n t i (−1.0)

Listing 1: gauss properties.m

3 Example: Integrate quartic() over [−1,+1]

The quartic(x) function is:
f(x) = 2x4 − 4x2 + x+ 20
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The function quartic int(a,b) returns the value of the definite integral of f(x) over [a, b]. We can use these
functions to test out a 2-point Gauss rule:

1 n = 2 ;
2
3 q exact = qu a r t i c i n t ( −1.0 , +1.0 ) ;
4
5 [ xi , rho ] = gauss ( n ) ;
6 q gauss = rho ’ ∗ qua r t i c ( x i ) ;
7
8 e = q exact − q gauss
9 fpr intf ( 1 , ’ %g %g %g\n ’ , q exact , q gauss , e ) ;

Listing 2: Two-point Gauss quadrature integral estimate.

We can make a useful function quartic gauss m1p1() that lets us vary the number of points, so we can see
how the error behaves as we increase n:

1 function quart ic gauss m1p1 ( n )
2
3 a = −1.0;
4 b = +1.0;
5 q exact = qu a r t i c i n t ( −1.0 , +1.0 ) ;
6
7 [ xi , rho ] = gauss ( n ) ;
8 q gauss = rho ’ ∗ qua r t i c ( x i ) ;
9

10 e = q exact − q gauss ;
11
12 return
13 end

Listing 3: quartic gauss m1p1.m

Try this function for n = 1, 2, 3; explain what has happened to the error when we reach the 3-point rule.

4 Example: Remapping a Gauss Rule

The Gauss rule is set up for integrals over [−1,+1]. What happens if we want to integrate over [a, b] instead?
To generate the correspond rule, Gn(f, a, b), the values ξ and ρ must be transformed to new values x and
w, as follows:

x← a+
b− a

2
(ξ + 1)

w ← b− a
2

ρ

The program gauss ab() can do this for us automatically:

1 function [ x , w ] = gauss ab ( n , a , b )
2 [ xi , rho ] = gauss ( n ) ;
3 x = a + ( x i + 1 .0 ) ∗ ( b − a ) / 2 . 0 ;
4 w = ( b − a ) ∗ rho / 2 . 0 ;
5 return
6 end

Listing 4: gauss ab returns a Gauss rule for a general interval.

The values x will lie in [a, b], and the w values will add up to b− a. The
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5 Exercise: Integrate quartic() over [2, 5]

Now we can try using a Gauss rule to estimate an integral over a general interval:

1 n = 2 ;
2 a = 2 . 0 ;
3 b = 5 . 0 ;
4 [ x , w ] = gauss ab ( n , a , b ) ;
5 q gauss = w’ ∗ qua r t i c ( x ) ;

Listing 5: Estimate the integral of a quartic polynomial over a general interval.

Try these commands, and compare your quadrature result with the exact value returned by quartic int(a,b).
Because the function is a polynomial of degree 4, what value of n should allow us to compute the exact value
of the integral?

6 Exercise: Integrate e−x
2

over [0, b]

We know that
∫ b
0
e−x

2

dx = 0.5 ∗
√
π erf(b), where erf(x) is the standard mathematical shorthand for the

error function. The corresponding MATLAB function is also called erf(x). The integrand e−x
2

is not a
polynomial, so we cannot expect that Gauss quadrature will return an exact estimate, no matter how many
points we use.

Estimate the value of
∫ 3

0
e−x

2

dx. Using your knowledge of the exact integral, seek a value of n large enough
that your absolute error is less than 1.0E-10.

1 n = ? ;
2 a = 0 . 0 ;
3 b = 3 . 0 ;
4 [ x , w ] = gauss ab ( n , a , b ) ;
5 q gauss = ?
6 q exact = ?
7 e = abs ( q exact − q gauss )

Listing 6: Estimating an exponential integral.

7 Example: Estimate the quadrature error for hump(x) over [0, 2]

The hump() function is not a polynomial, involves rational functions, and has a strong variation over the
domain. We expect that a Gauss rule can drive the error to zero, but we don’t know, in advance, what n to
use.

Pretend that we don’t actually know the value of the integral. Then if we compute a sequence of estimates
for increasing values of n, we can estimate the error as the difference between our current integral estimate
and the previous one. If we have been given an error tolerance, then we can stop when our estimated error
is less than this tolerance.

1 t o l = 0 .1
2
3 a = 0 . 0 ;
4 b = 2 . 0 ;
5
6 n = 0 ;
7 q = 0 . 0 ;
8
9 while ( t rue )

10 q prev = q ;
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11 n = n + 1 ;
12 [ xi , rho ] = gauss ( n ) ;
13 x = a + ( x i + 1 ) ∗ ( b − a ) / 2 . 0 ;
14 w = rho ∗ ( b − a ) / 2 . 0 ;
15 q = w’ ∗ hump ( x ) ;
16 e r r e s t = abs ( q − q prev ) ;
17 i f ( e r r e s t < t o l )
18 break
19 end
20 end
21 fpr intf ( 1 , ’ %2d %16.12 f %e\n ’ , n , q , e r r e s t ) ;

What is the least value of n that we need so that the estimated error is less than 1.0E-10?

8 A composite Gauss rule

We have seen that we can seek higher accuracy by increasing the value of n in a Gauss rule. This approach
can break down if the integrand function does not have 2 ∗n− 1 continuous derivatives. Also, as n gets very
large (say, beyond 50) the Gauss nodes near the endpoints begin to get too close together, and there can
be a loss of accuracy. An alternative is to use a composite rule, that is, to divide the interval [a, b] into m
equal subintervals, apply an n-point Gauss rule on each, and sum the results. This is known as a composite
Gauss rule.

9 Exercise: Integrate 1
2+cos(x) over [0, 2π]

We know that
∫ 2π

0
1

2+cos(x) dx ≈ 3.62759872846844. Because the integrand involves a rational function, and

the cosine, we expect that convergence may be slow.

1 function [ q , e ] = co s f r a c compos i t e ( m, n )
2
3 a = 0 . 0 ;
4 b = 2 .0 ∗ pi ;
5 q = 0 . 0 ;
6
7 s = linspace ( a , b , m + 1 ) ;
8
9 for i = 1 : m

10 [ x , w ] = gauss ab ( n , s ( i ) , s ( i +1) ) ;
11 qs = w’ ∗ c o s f r a c ( x ) ;
12 q = q + qs ;
13 end
14
15 e = c o s f r a c i n t ( ) − q ;
16
17 return
18 end

Listing 7: Estimate cosine fraction integral.

Let’s say we have a “budget” of 30 function evaluations. Then we can try every combination of m and n
such that m×n = 30. If we run the code for each of these cases, we get a surprising variation in the results!

10 No Computing Assignment for this Lab!
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