
Polynomials:
Representation, Evaluation, Operations

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/polynomial operations/polynomial operations.pdf

Evaluating three representations of the same polynomial.

Polynomial Computations

• What choices are there for representing a polynomial?
• What is an efficient evaluation procedure?
• How do we add, multiply, divide, differentiate, and integrate?

A (real) polynomial of degree d can be defined in power form as

p(x) = c0 + c1x+ c2x
2 + ...+ cdx

d Mathematical power form (0-based)

where the quantities ci are real numbers known as the coefficients of the polynomial. Here, the subscript of
the coefficient ci matches the corresponding power xi. This is the most natural way to describe a polynomial.

We assume that cd is not 0, otherwise the polynomial actually has a degree lower than d.

1 Power form (1-based)

MATLAB does not allow the use of 0 as an array index. The simplest way to deal with this issue is to use
a “1-based” power form, in which ci+1 multiplies xi:

p(x) = c1 + c2x+ c3x
2 + ...+ cd+1x

d power form (1-based)

1

Because it is still pretty easy to think about polynomials this way, this is the form that we will prefer for
most of the following discussion.

Thus, the degree-3 polynomial
p(x) = 1.1 + 3.3x2 − 4.44x3

could be stored as a MATLAB array of 4 entries:

1 c = [1 . 1 , 0 . 0 , 3 . 3 , 4 .44]

2 Print a polynomial

If we want to print out a polynomial, we could just print the vector of coefficients c. It is much more
intelligible to try to reproduce the full mathematical form, if possible. Here is a very basic example that
suggest how we might do this:

1 function po l y p r i n t (c)
2 d = length (c) − 1 ;
3 for i = 0 : d
4 fpr intf (’%g xˆ%d\n ’ , c (i +1) , i) ;
5 end
6 return
7 end

Listing 1: Basic poly print.m code.

While we could work harder to make nicer output, here’s what happens if we call the function to print out
3x5 − 2x3 + x2 − 5x− 17:

1 c = [−17, −5, 1 , −2, 0 , 3] ;
2 po l y p r i n t (c) ;
3
4 −17 xˆ0
5 −5 xˆ1
6 1 xˆ2
7 −2 xˆ3
8 0 xˆ4
9 3 xˆ5

Listing 2: Using poly print().

For somewhat nicer output, we could try the fancier function r8poly print(c).

1 c = [−17, −5, 1 , −2, 0 , 3] ;
2 r 8po l y p r i n t (c) ;
3
4 p(x) = 3.000000 ∗ xˆ5
5 − 2.000000 ∗ xˆ4
6 + 1.000000 ∗ xˆ2
7 − 5.000000 ∗ x
8 − 17.000000

Listing 3: Using the fancier r8poly print().

which prints the polynomial in the more traditional form in which the highest power is shown first. It also
omits powers of x with zero coefficient.

2

3 Add two polynomials

Adding two polynomials just means combining coefficients of the same power. The polynomials may have
different degrees; the degree of the sum should be the higher of the two degrees. We can simplify the process
by copying the coefficients of the higher degree polynomial, and then adding the coefficients of the lower
degree polynomial:

1 function c3 = poly add (c1 , c2)
2 d1 = length (c1) − 1 ;
3 d2 = length (c2) − 1 ;
4 d3 = max (d1 , d2) ;
5 c3 = zeros (d3+1, 1) ;
6
7 i f (d2 < d1)
8 c3 = c1 ;
9 for i = 0 : d2

10 c3 (i +1) = c3 (i +1) + c2 (i +1) ;
11 end
12 else
13 c = c2 ;
14 for i = 0 : d1
15 c3 (i +1) = c3 (i +1) + c1 (i +1) ;
16 end
17 end
18
19 return
20 end

Listing 4: Polynomial addition.

Why couldn’t we simply say the following?

1 for i = 0 : d3
2 c3 (i +1) = c1 (i +1) + c2 (i +1) ;
3 end

Listing 5: Explain why this is a bad idea.

4 Multiply two polynomials

Mathematically, if p3 = p1 ∗ p2, then the coefficients of p3 can be computed by

c3k =
∑

i+j=k

c1i c2j 0 ≤ k ≤ d1 + d2

So computationally, multiplying two polynomials means computing every possible product c1(i) ∗ c2(j) and
adding that to c3(i+ j). But we have to remember to increment our coefficient indices by 1. The degree of
the product will be the sum of the degrees of the factors:

1 function c3 = po ly mu l t ip l y (c1 , c2)
2 d1 = length (c1) − 1 ;
3 d2 = length (c2) − 1 ;
4 d3 = d1 + d2 ;
5 c3 = zeros (d3+1, 1) ;
6
7 for i = 0 : d1
8 for j = 0 : d2
9 c3 (i+j+1) = c3 (i+j+1) + c1 (i +1) ∗ c2 (j +1) ;

10 end
11 end

3

12
13 return
14 end

Listing 6: Polynomial multiplication.

Use this function to compute (2x− 3) (5x2 + 4x+ 6).

5 Quotient and remainder of two polynomials

Polynomial division of p1 by p2 yields quotient polynomial q and remainder polynomial r so that:

p1 = q ∗ p2 + r

We are all familiar with how to divide one polymonial into another, but the details are a little difficult to
work out. Here is how to do it:

1 function [c3 , c4] = po l y d i v i d e (c1 , c2)
2 d1 = length (c1) − 1 ;
3 d2 = length (c2) − 1 ;
4
5 d3 = d1 − d2 ;
6 d4 = d2 − 1 ;
7
8 c3 = zeros (d3 + 1 , 1) ;
9

10 for i = d3 : −1 : 0
11 c3 (i +1) = c1 (i+d2+1) / c2 (d2+1) ;
12 c1 (i +1: i+d2) = c1 (i +1: i+d2) − c3 (i +1) ∗ c2 (1 : d2) ;
13 end
14
15 c4 (1 : d4+1) = c1 (1 : d4+1) ;
16
17 return
18 end

Listing 7: Quotient and remainder of polynomial division.

We can check this by dividing:
p1 = x4 + 3x3 + 2x2 + 5x− 2

by
p2 = x2 + x− 3

for which
q = x2 + 2x+ 3

with remainder
r = 8x+ 7

and we can verify this by then recomputing

p1 = q ∗ p2 + r :

as in the following computation:

1 c1 = [−2 ,5 ,2 ,3 ,1] ;
2 c2 = [−3 , 1 , 1] ;
3 [q , r] = po l y d i v i d e (c1 , c2) ;
4 qp = po ly mu l t ip l y (q , c2) ;
5 qpr = poly add (qp , r) ; <−− q∗p+r should equal c1

Listing 8: Divide and then verify.

4

6 Squares and powers of a polynomial

Now that we have poly multiply(), let’s use it to create a function for the k-th power of a polynomial.
Notice how we start the coefficient vector c2 as a single number 1, which is the correct coefficient vector for
p01. Then we multiply this polynomial k times by p1, to arrive at the final form of c2.

1 function c2 = poly power (c1 , k)
2 c2 = 1 . 0 ;
3 for i = 1 : k
4 c2 = po ly mu l t ip l y (c1 , c2)
5 end
6 return
7 end

Listing 9: Powers of a polynomial.

7 Derivative and antiderivative of a polynomial

The coefficients of the derivative of a polynomial can easily be computed. We multiply each coefficient by
the exponent of its power of x, and then shift the coefficients down one position.

1 function c2 = po l y d e r i v (c1)
2
3 d1 = length (c1) − 1 ;
4 d2 = d1 − 1 ;
5
6 for i = 0 : d2
7 c2 (i +1) = (i + 1) ∗ c1 (i +2) ;
8 end
9

10 return
11 end

Listing 10: The derivative of a polynomial.

Technically, a polynomial has many antiderivatives. We’ll just return the antiderivative whose constant term
is 0. We need to shift each coefficient to one higher position and divide by the appropriate power.

1 function c2 = po l y an t i d e r i v (c1)
2
3 d1 = length (c1) − 1 ;
4 d2 = d1 + 1 ;
5 c2 (1 : d2+1) = 0 . 0 ;
6
7 c2 (1) = 0 . 0 ;
8 for i = 1 : d2
9 c2 (i +1) = c1 (i) / i ;

10 end
11
12 return
13 end

Listing 11: An antiderivative of a polynomial.

8 L2 norm of a polynomial

The L2 norm of a function f(x) over the finite interval [a, b] is defined as:

||f ||2 =

√∫ b

a

f(x)2dx

5

If we are working with a polynomial, we can do such integrals exactly. Using functions we have already
described, we can build a new function that evaluates L2 norms:

1 function value = poly norm (c , a , b)
2
3 c2 = po ly square (c) ;
4 c2a = po l y an t i v a l u e (c2 , a) ;
5 c2b = po l y an t i v a l u e (c2 , b) ;
6 va lue = sqrt (c2b − c2a) ;
7
8 return
9 end

Listing 12: Compute the L2 norm of a polynomial.

Actually, we didn’t explain how to write poly square(), which returns the coefficients of the square of a
polynomial, but how hard can that be?

9 Evaluate a power form polynomial

We wish to evaluate a power form polynomial p(x) for a given value of x. If the polynomial is of low degree,
we can simply write out the expression and be done:

value = 3x4 − 7x2 − 5x+ 17

but if we want a procedure to handle arbitrary polynomials, we write:

1 function value = po ly va lue t e rmwi se (c , x)
2 d = length (c) − 1 ;
3 va lue = 0 . 0 ;
4 for i = 0 : d
5 value = value + c (i +1) ∗ xˆ(i) ;
6 end
7 return
8 end

Listing 13: Evaluate a polynomial term by term.

while a nested multiplication version, sometimes called Horner’s method, would be:

1 function value = po ly va lu e ne s t ed (c , x)
2 d = length (c) − 1 ;
3 va lue = c (d+1) ;
4 for i = d − 1 : −1 : 0
5 value = value .∗ x + c (i +1) ; <−− The per iod means x can be a vec to r
6 end
7 return
8 end

Listing 14: Nested multiplication for polynomial evaluation.

10 Exercise: Plot a Chebyshev polynomial

The seventh Chebyshev polynomial T7(x) is defined by

T7(x) = 64x7 − 112x5 + 56x3 − 7x

Plot this polynomial over the interval−1 ≤ x ≤ 1. Use a combination of x=linspace() and y=poly value nested()

to set up your data.

6

11 Polynomials in factor form

If we know all the roots of a polynomial of degree d, then we can write it in factored form:

p(x) =

d∏
i=1

(x− ri) Factor form polynomial

where the quantities ri are the roots of the polynomial. For convenience, we will assume all the roots are
real.

12 Evaluate a factor form polynomial

A factored polynomial could be evaluated by:

1 function value = f a c t o r v a l u e (r , x)
2 d = length (r) ;
3 va lue = 1 . 0 ;
4 for i = 1 : d
5 value = value ∗ (x − r (i)) ;
6 end
7 return
8 end

Listing 15: Evaluate factor form polynomial.

13 Convert from factor form to power form

We might prefer to see a factor form polynomial rewritten in power form. To do this, we just use our
multiplication function repeatedly:

1 function c = f a c t o r t o p o l y (r)
2 n = length (r) ;
3 c = 1 . 0 ;
4 for i = 1 : n
5 c = po ly mu l t ip l y (c , [−r (i) , 1 . 0]) ; <−− Mult ip ly by (x−r (i))
6 end
7 return
8 end

Listing 16: Convert factor form to power form.

14 Convert from power form to factor form

If we have the polynomial in power form, getting factor form is the same as finding all its roots. This is
not an easy process in general! However, MATLAB provides a function r=roots(c) which will do the job.
Unfortunately. roots() uses the MATLAB polynomial representation, which lists coefficients in the reverse
order to the one I have been using. Bearing that in mind, here is our conversion:

1 function r = po l y t o f a c t o r (c)
2 r = roots (c (end :−1:1)) ;
3 return
4 end

Listing 17: Convert power form to factor form.

7

Thus, we can do the following experiment:

1 r = [1 , 2 , 3 , 4] ;
2 c = f a c t o r t o p o l y (r) ;
3 r2 = po l y t o f a c t o r (c) ;

Listing 18: Test factor to power to factor.

Does the output value of r2 match the original values in r?

15 MATLAB’s polynomial representation

MATLAB has a number of built-in functions that work with polynomials. However, MATLAB orders the
coefficients in the opposite order from that which we are using. In other words, for MATLAB, a polynomial
of degree d with coefficients c is to be thought of as

p(x) = c1x
d + c2x

d−1 + c3x
d−2 + ...+ cdx+ cd+ 1 MATLAB power form

Thus, each term has the form ci x
d+1−i, so that the coefficient index and power of x always sum to d+ 1.

I find this convention awkward to work with, which is why I have been showing you my preferred represen-
tation. However, MATLAB has a number of useful functions for analyzing a polynomial, and to use them,
we have to give and receive polynomial data in MATLAB’s representation.

Luckily, this is easy to do. If we have a coefficient vector c for a polynomial of degree d, then before we pass
it to a MATLAB function like polyval(), we need to reverse the order of the elements. One way to do that
would be to make a reversed copy of c:

1 c back = zeros (d , 1) ;
2 for i = 1 : d + 1
3 c back (i) = c (d+2− i) ; <−− Not so easy to exp la in or remember !
4 end
5 v = polyval (c back , x) ;
6 or
7 c back = c (d+1:−1:1) ;
8 v = polyval (c back , x) ;
9 or

10 c back = c (end :−1:1) : <−− Note that ”end” means the l a s t index .
11 v = polyval (c back , x) ;
12
13 but then we could j u s t use the o r i g i n a l array with r e v e r s e index ing :
14
15 v = polyval (c (end :−1:1) , x) ;

Listing 19: Ways to reverse your coefficient vector.

But we can do that implicitly, simply be a reverse in expects polynomial coefficients to be numbered in the
reverse order from our convention. If you have coefficients numbered so that c1 is the constant term, than
you can give MATLAB a reverse copy by passing c(end:-1:1).

16 Evaluate using MATLAB’s polyval()

MATLAB provides the function value = polyval(c,x), for which x can be a vector of values. An example
of this usage is available in evaluation compare.m.

Suppose we want to evaluate the Chebyshev polynomial T7(x) at a set of points x. If we are already
committed to using the power form, then we call polyval() this way:

8

1 c1 = [0 , −7, 0 , 56 , 0 , −112, 0 , 64] ; % power form
2 y1 = polyval (c1 (end :−1:1) , x) ;

but if we use the MATLAB representation instead, we simply call:

1 c2 = [64 , 0 , −112, 0 , 56 , 0 , −7, 0] ; % MATLAB power form
2 y2 = polyval (c2 , x) ;

17 Exercise: Compare evaluation procedures

De Boor, Exercise 2.1-1, page 37: Evaluate the cubic polynomial p(x) = (x − 99π)(x − 100π)(x − 101π) at
x = 314.15. Then use nested multiplication to obtain p(x) in power form, and evaluate the power form at
x = 314.15 and compare!

1 function eva luat ion compare (x)
2
3 %% evaluat ion compare compares methods o f e va l ua t i n g a polynomial .
4
5 p f a c t o r = [99 .0∗pi , 100 .0∗pi , 101 .0∗ pi] ;
6 p power = [−999900∗pi ˆ3 , 29999∗pi ˆ2 , −300.0∗pi , 1 . 0] ;
7
8 value = poly power term value (p power , x) ;
9 fpr intf (1 , ’ Power form , term−by−term eva lua t i on = %g\n ’ , va lue) ;

10
11 value = po ly power ne s t va lue (p power , x) ;
12 fpr intf (1 , ’ Power form , nested eva lua t i on = %g\n ’ , va lue) ;
13
14 value = po l y f a c t o r p r odu c t v a l u e (p f a c to r , x) ;
15 fpr intf (1 , ’ Factor form , product eva lua t i on = %g\n ’ , va lue) ;
16
17 value = polyval (p power (end :−1:1) , x) ;
18 fpr intf (1 , ’ Power form , po lyva l eva lua t i on = %g\n ’ , va lue) ;
19
20 return
21 end

Listing 20: Compare polynomial evaluation methods.

Surprisingly, this exercise doesn’t seem to exhibit much difference in the results. However, De Boor’s example
was set up during the days when single precision (32 bit) calculations were most common. We can ask
MATLAB to carry out such reduced-precision computations using the single() function. If we repeat the
comparison using single precision arithmetic, the issue becomes much clearer.

The moral is now twofold: double precision certainly helps, but the power representation of a polynomial is
clearly much more subject to error than the factor form, if it is available.

This same issue can be seen in the graphic at the beginning of this lab, although the errors in the power
form are only really visible at a “microscropic” scale, of the order of 10−14.

18 Newton polynomial representation

The Newton polynomial representation will make more sense when we look at divided differences.

The Newton represention involves three quantities:

• d, the degree;
• c(0:d), the coefficients;

9

• z(1:d), the centers;

An abstract example of a degree d = 3 polynomial in Newton form would be

p(x) = c(0)

+ c(1) ∗ (x− z(1))

+ c(2) ∗ (x− z(1)) ∗ (x− z(2))

+ c(3) ∗ (x− z(1)) ∗ (x− z(2)) ∗ (x− z(3))

A Newton polynomial can be written compactly as:

p(x) =

d∑
i=0

ci ∗
i∏

j=1

(x− zj)

Note that, when we are using MATLAB, we have to shift the indices of the coefficients up by 1, because
MATLAB does not allow a 0 index. We can evaluate a Newton polynomial in nested form:

1 function value = newton value (c , z , x)
2 d = length (c) − 1 ;
3 va lue = c (d+1) ∗ ones (s ize (x)) ;
4 for i = d : −1 : 1
5 value = value .∗ (x − z (i)) + c (i) ;
6 end
7 return
8 end

Listing 21: Evaluate a Newton polynomial.

19 Exercise: Newton polynomial evaluation

The Wikipedia page for Newton polynomial describes a polynomial interpolant to the tangent function, with
data:

• n = 4, the degree;
• c(1:n+1)=[-14.1014, 17.5597, -10.8784, 4.83484, 0.0];
• z(1:n)=[-1.5, -0.75, 0,0.75, 1.5];

We can tabulate this polynomial over [−1.5, 1.5], and plot the function and polyomial interpolant:

1 c = [−14.1014 , 17 .5597 , −10.8784 , 4 .83484 , 0 . 0] ;
2 z = [−1.5 , −0.75 , 0 , 0 . 75 , 1 . 5] ;
3 tz = tan (z) ;
4 nx = 33 ;
5 x = linspace (−1.5 , +1.5 , nx) ;
6 px = newton value (c , z , x) ;
7 tx = tan (x) ;
8 for i = 1 : nx
9 fpr intf (1 , ’ %f %f %f \n ’ , x (i) , px (i) , tx (i)) ;

10 end
11 hold (’ on ’) ;
12 plot (x , px , ’ r− ’ , x , tx , ’b− ’)
13 plot (z , tz , ’ k . ’ , ’ markers i ze ’ , 20) ;
14 hold (’ o f f ’) ;

Listing 22: Evaluate the Wikipedia Newton polynomial.

10

A Newton polynomial that interpolates tan(x) at 5 points.

20 Sparse form representation

The sparse form representation of a polynomial stores three quantities:

• m, the number of coefficients;
• c(1:m), the coefficients;
• e(1:m), the exponents;

The polynomial can be reconstructed by:

p(x) =

m∑
i=1

cix
ei

This representation can be useful if polynomials are being considered which have high degree, but few nonzero
coefficients. This representation is also easy to extend to polynomials in multiple variables x1, x2, ..., xk; we
simply make each exponent a k-dimensional object.

However, this simple and efficient representation means more work when we try to determine the degree, or
add or multiply two sparse form polynomials.

Project: Write MATLAB functions to work with polynomials in the sparse representation:

• return degree of a polynomial;
• sort terms by exponent, and add terms with the same exponent;
• add or multiply two polynomials;
• divide one polynomial by another;
• convert to and from power form and factor form;
• compute derivative and antiderivative;

21 No Computing Assignment for this Lab!

11

