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This cautious skater has not chosen the optimal descent direction!

A Minimization Problem

Given a function f(x) with derivative f ′(x), find a value x for which f(x) attain its minimum value..

1 Minimize a quartic function using gradient descent

Consider the function named quartic() whose formula is:

f(x) = 2x4 − 4x2 + x+ 20

Suppose f(x) measures a cost and we seek a value x which minimizes it.

The fact that quartic() is a polynomial means that we could seek zeroes of the derivative. However, this
would not be a solution for a general function f(x); this polynomial is just a convenient example.

We might start at a point x in [−2,+2] that we suspect is close to the minimizer. Our next step could be to
move a little to the left or right from our starting point. If we happen to know f ′(x), then:

• if 0 < f ′(x), then f(x) decreases to the left: ↙;
• if f ′(x) < 0, then f(x) decreases to the right: ↘;

For our quartic function, the derivative is

f ′(x) = 8x3 − 8x+ 1

If we started our investigation at x = 1.5, then f(1.5) = 22.625, and f ′(1.5) = 16.0 so for our next estimate
of the minimizer, we should move a little to the left.
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The quartic() function

This is the heart of the gradient descent method. From your current estimate, take a small step, related
to the size of the derivative, opposite to the direction of the derivative. Keep doing that until the stepsize
gets so small that you are evidently near a critical point. If your stepsize causes the function value to
increase, back up and try a smaller stepsize.

We saw a similar idea of retrying the step when we looked at the damped Newton method.

2 Gradient descent pseudocode for 1D case

Pseudocode for a gradient descent method might look like this,

1 g rad i en t de s c en t1 ( f , df , x , r , dxtol , d f t o l , itmax )
2
3 # gradient descent for a function o f 1 parameter
4
5 i t = 0
6
7 Loop1 :
8
9 i f | df ( x ) | < d f t o l ) return ( su c c e s s )

10 xold = x
11 beta = 1.0
12
13 Loop2 :
14 i t = i t + 1
15 i f ( itmax < i t ) return ( f a i l u r e )
16 dx = − beta ∗ r ∗ df ( xold )
17 i f ( | dx | < dxto l ) return ( su c c e s s )
18 x = xold + dx
19 i f f ( x ) < f ( xold ) break Loop2
20 beta = beta / 2
21 i f ( beta < 1 / 1024 ) return ( f a i l u r e )
22 Loop2 end
23
24 Loop1 end

Listing 1: Pseudocode for gradient descent in 1D.

The input quantities f and df define the function and its derivative, x is the starting point, r is the learning
rate, a sort of stepsize control, dxtol and dftol are tolerances for the minimum size of the step and derivative,
and itmax limits the number of iterations.
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3 Example: Applying gradient descent to quartic()

For our quartic function, we prepare files quartic.m and quartic df.m defining f(x) and f ′(x):

1 function value = qua r t i c ( x )
2 value = 2 .0 ∗ x .ˆ4 − 4 .0 ∗ x .ˆ2 + x + 20 . 0 ;
3 return
4 end

Listing 2: quartic.m defines f(x).

1 function value = qua r t i c d f ( x )
2 value = 8 .0 ∗ x .ˆ3 − 8 .0 ∗ x + 1 . 0 ;
3 return
4 end

Listing 3: quartic df.m defines f’(x)

We call gradient descent1() with a starting guess x0 in our chosen interval of [−2,+2]. The sizes of r,
dxtol and dftol are just guesses for “small enough”. We can adjust them after we run the code once:

1 x0 = −1.6;
2 r = 0 . 0 5 ;
3 dxto l = 0 . 0 0 1 ;
4 d f t o l = 0 . 0 0 1 ;
5 itmax = 100 ;
6 [ x , i t ] = g rad i en t de s c en t1 ( @(x ) qua r t i c ( x ) , @(x ) qu a r t i c d f ( x ) , x0 , r , dxtol , d f t o l ,

itmax ) ;

Listing 4: Calling gradient descent1 for the quartic function.

Our results are:

it x f(x) f’(x)
0 -1.5 19.625 -14
1 -0.8 17.4592 3.304
2 -0.9652 17.044154 1.5280722
3 -1.0416036 16.972825 0.29222552
4 -1.0562149 16.970507 0.023297948
5 -1.0573798 16.970493 0.00139357

We end up on the left side of the plot, which seems likely since our starting point was nearest to that local
minimum.

4 Exercise: Applying gradient descent to sag()

The example function sag() has the definition:

f(x) = x2 cos(
x+ 3π

4
)

A plot suggests that there is a minimizer between 0 and 10:
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The sag() function

Create files sag.m and sag df.m defining f(x) and f ′(x), and call gradient descent1() with a starting point
in [0, 10] and see if you can find a value of x for which f(x) is minimized.

5 Gradient Descent in Higher Dimensions

Now let’s consider what happens if we have a function of multiple variables. For simplicity, let’s consider
the two-dimensional case, which we may think of as involving a function f(x1, x2) or f(x, y). An example
of such a function is named hex2(), and has the form

f(x, y) = 2x2 − 1.05x4 + x6/6 + xy + y2

We can ask for a minimizer of this function, which we suspect is somewhere in the range −3 ≤ x, y ≤ +3.
As before, we will use derivative information, known as the gradient, symbolized by ∇f . For our problem,

this information is
[
∂f
∂x ,

∂f
∂y

]
with values:

∂f

∂x
= 4x− 4.2x3 + x5 + y

∂f

∂y
= x+ 2y

6 Gradient descent pseudocode for multiple dimensions

The gradient descent code for multiple dimensions is almost the same, except for two places where we need
to use a norm instead of an absolute value; also x, xold, dx and df() are vectors now, rather than scalars.

1 g rad i en t de s c en t2 ( f ( ) , d f ( ) , x , r , dxtol , d f t o l , itmax )
2
3 # gradient descent for a function o f mu l t ip l e parameters
4
5 i t = 0
6
7 Loop1 :
8
9 if ||df(x)|| < dftol ) return (success)

10 xold = x
11 beta = 1.0
12
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13 Loop2 :
14 i t = i t + 1
15 i f ( itmax < i t ) return ( f a i l u r e )
16 dx = − beta ∗ r ∗ df ( xold )
17 if ( ||dx|| < dxtol ) return (success)
18 x = xold + dx
19 i f f ( x ) < f ( xold ) break Loop2
20 beta = beta / 2
21 i f ( beta < 1 / 1024 ) return ( f a i l u r e )
22 Loop2 end
23
24 Loop1 end
25
26 Return x , i t

Listing 5: Pseudocode for gradient descent in multiple dimensions.

7 Example: Applying gradient descent to hex2()

A contour plot suggests that there are three minimizers in the range −2 ≤ x, y ≤ +2.

Contour plot of the hex2() function

We prepare files hex2.m and hex2 df.m. The input x and output df are now vectors of length 2:

1 function value = hex2 ( xy )
2 x = xy (1) ;
3 y = xy (2) ;
4 va lue = 2 .0 ∗ x .ˆ2 − 1 .05 ∗ x .ˆ4 + x .ˆ6 / 6 .0 + x .∗ y + y . ˆ 2 ;
5 return
6 end

Listing 6: Definitions of f(x) for hex2().

1 function value = hex2 df ( xy )
2 x = xy (1) ;
3 y = xy (2) ;
4 va lue = [ . . .
5 4 . 0 ∗ x − 4 .2 ∗ x .ˆ3 + x .ˆ5 + y , . . .
6 x + 2 .0 ∗ xy ] ;
7 return
8 end

Listing 7: Definitions of f’(x) for hex2().
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We call gradient descent2() with a starting point x0 inside our interval, and tentative tolerances:

1 x0 = [ 2 . 0 , 1 . 5 ] ;
2 r = 0 . 1 0 ;
3 dxto l = 0 . 00001 ;
4 d f t o l = 0 . 0 0 1 ;
5 itmax = 100 ;
6 [ x , i t ] = g rad i en t de s c en t2 ( @(x ) hex2 (x ) , @(x ) hex2 df ( x ) , x0 , r , dxtol , d f t o l , itmax ) ;

Listing 8: Calling gradient descent2 for hex2().

Our results are:

it x y f(x) dfdx dfdy
0 2.000000 1.500000 7.116666 7.970000 5.000000
1 1.210000 1.000000 3.410503 0.993186 3.210000
2 1.110681 0.679000 2.397414 1.057327 2.468681
3 1.004948 0.432131 1.741589 1.214253 1.869212
4 0.883523 0.245210 1.277457 1.420986 1.373944
.. ... ... ... ...

41 0.000248 -0.000599 3.340249e-07 0.000393 -0.000950
42 0.000209 -0.000504 2.364863e-07 0.000331 -0.000800

Here the results look pretty satisfactory.

8 Exercise: Applying gradient descent to rosenbrock()

The example function rosenbrock() has the definition:

f(x, y) = 100(y − x2)2 + (1− x)2

A contour plot suggests that there is a minimizer in the range 0.0 ≤ x, y ≤ 3.0.

Contour plot of the Rosenbrock function

Create files rosenbrock.m and rosenbrock df.m defining f(x) and f ′(x); call gradient descent2() starting
at [1.25, 1.50]. Start with r=0.0025 and itmax=100. You will find convergence very slow! Increase itmax

by 100 several times, until you get an approximate minimizer (x, y) such that |f(x, y)| < 0.00001.
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9 Gradient Descent for data fitting

Many machine learning problems start with a mass of data, in which one y is approximately determined by
one or more variables that we think of as x. For instance, we may have n pairs of values (xi, yi). We look
for parameters b and m in a linear model y = b+m ∗ x that approximates our data well.

The numbers b and m are unknown. For any particular i, we will measure the error ei as the square of the
difference between the model’s prediction based on xi, and the actual data yi:

ei(b,m) = (yi − b−mxi)2

Now we want to minimize the sum of all those functions. We call this single function E(b,m):

E(b,m) =

n∑
i=1

ei(b,m)

We want to make this problem this look like a typical case for gradient descent. We start by defining a
single variable bm = [b,m], which packs all our variables into one. Correspondingly, we can now write
f(bm) = f([b,m]) = E(b,m). We need to evaluate f(bm) and df(bm):

1 function value = f o r d f (bm)
2 b = bm(1) ;
3 m = bm(2) ;
4 [ x , y ] = fo rd data ( ) ;
5 f = sum ( ( y − b − m ∗ x ) . ˆ2 ) ;
6 return
7 end

Listing 9: Evaluate f(bm) for Ford data

1 de f va lue = f o r d d f (bm)
2 b = bm(1) ;
3 m = bm(2) ;
4 [ x , y ] = fo rd data ( ) ;
5 dfdb = − 2 .0 ∗ sum ( ( y − b − m ∗ x ) ) ;
6 dfdm = − 2 .0 ∗ sum ( ( y − b − m ∗ x ) .∗ x ) ;
7 va lue = [ dfdb , dfdm ] ;
8 return
9 end

Listing 10: Evaluate gradient ∇(f) for Ford data

and now we need to write a function ford data() which returns a copy of our data. The gradient descent
method does not perform well if the variables have very different scales. To be safe, we can always rescale each
column to lie between 0 and 1. However, this means that our values of b and m will apply to the normalized
data. If we want to write the formula in terms of the original data, we have to undo the normalization (a
cleanup task which we will not do here!)

1 function [ x , y ] = fo rd data ( )
2
3 data = np . l oadtx t ( ’ f o rd data . txt ’ )
4
5 x = data ( : , 1 ) ;
6 y = data { : , 2 ) ;
7
8 x = ( x − min ( x ) ) / ( max ( x ) − min ( x ) ) ;
9 y = ( y − min ( y ) ) / ( max ( y ) − min ( y ) ) ;

10
11 return
12 end

Listing 11: Return the values of the Ford data
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After writing these three procedures, we can call gradient descent2() as before:

1 bm0 = [ 0 . 5 , 0 . 0 ] ;
2 r = 0 . 0 1 ;
3 dxto l = 0 . 0 0 1 ;
4 d f t o l = 0 . 0 0 1 ;
5 itmax = 1000 ;
6 [ bm, i t ] = g rad i en t de s c en t2 ( @(x ) f o r d f ( x ) , @(x ) f o r d d f ( x ) , bm0, r , dxtol , d f t o l ,

itmax ) ;

Listing 12: Calling gradient descent2 for the Ford data.

10 Example: Gradient descent to fit Ford data

We run gradient descent2 on the Ford problem, with a starting guess of bm0=[b,m]=[0.5,0.0]:

1 f o rd g r ad i en t 2 :
2 Given mi leage x and p r i c e y for used Fords ,
3 seek (m, b) so that y=b+mx approximates the data .
4 Use gradient descent2 to es t imate best b and m.
5
6 i t : 0 x : [ 0 . 5 0 . ] f ( x ) 2.5773498181818186 df ( x ) [−9.05163636 −1.34333243]
7 i t : 1 x : [ 0 . 59051636 0 .01343332 ] f ( x ) 1.954602113941928 df ( x ) [−4.61119726 0 .68933256 ]
8 i t : 2 x : [ 0 . 63662834 0.00654 ] f ( x ) 1.7798747361978844 df ( x ) [−2.63202845 1 .55273919 ]
9 i t : 3 x : [ 0 .66294862 −0.00898739] f ( x ) 1.6955150280382623 df ( x ) [−1.74111328 1 .90032506 ]

10 . . . . . . more output . . . . . .
11 i t : 117 x : [ 1 .0471238 −0.78465017] f ( x ) 0.5783556887827288 df ( x ) [−0.04539271 0 .09537134 ]
12 i t : 118 x : [ 1 .04757773 −0.78560388] f ( x ) 0.578245646967721 df ( x ) [−0.04415571 0 .09277238 ]
13 i t : 119 x : [ 1 .04801929 −0.78653161] f ( x ) 0.5781415209296815 df ( x ) [−0.04295242 0 .09024424 ]
14
15 Step s ize | | dx | | l e s s than dxto l = 0.001
16
17 Norm of i n i t i a l error i s 2 .57735
18 Norm of t o t a l error i s 0 .578142

Listing 13: Output for gradient descent2 on Ford data

Our parameters are b=1.048, m = -0.786. We plot the normalized data:

A linear formula y = b+mx approximates the normalized Ford data

11 No Computing Assignment for this Lab!
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