
Ordinary Differential Equations:
Runge-Kutta methods

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/ode runge kutta/ode runge kutta.pdf

A fourth order Runge Kutta step involves several initial test steps.

ODE’s by a Runge-Kutta method

Given an ODE: y′ = f(t, y), y(t0) = y0, consider the Runge-Kutta family of solution methods, which
are more accurate than the Euler method.

1 The Runge-Kutta idea

In class, it was explained that, in order to solve an ODE of the form

y′ = f(t, y)

y(t0) = y0

a Runge-Kutta method advances one step at a time. But each step is preceded by a number of trial steps
that essentially sample the right hand side function. The result is that the error in a single step (the local
truncation error) can be much reduced. This, in turn, means that the overall error, say at a final time of
interest, is similarly reduced.

A Runge-Kutta method has an order, which reflects the global accuracy. Thus, if we use a Runge-Kutta
method of order 2 with a step size of dt, we expect that the error in our approximation at any fixed time T

will tend to decrease like O(dt2). This is the benefit of using a Runge-Kutta scheme.

The cost of using a Runge-Kutta scheme is reflected in the fact that a scheme of order k typically needs k
trial steps (and sometimes more) to produce the next approximate solution.

1

2 Several Runge Kutta methods

Assume we have already computed yn, and have chosen a stepsize dt. The computation of the next ap-
proximation, yn+1 by Runge Kutta method involves computing quantities known as stages. Here we will
symbolize these quantities by subscripted variables k. Here are examples of Runge-Kutta methods of orders
1, 2, 3 and 4, in which the computation and use of the stages can be examined:

1. The Euler method (order 1):

k1 = dt y′(tn, yn)

yn+1 = yn + k1

2. Heun’s method (order 2):

k1 = dt y′(tn, yn)

k2 = dt y′(tn+1, yn + k1)

yn+1 = yn + 0.5 k1 + 0.5 k2

3. Strong Stability Preserving Runge Kutta (order 3):

k1 = dt y′(tn, yn)

k2 = dt y′(tn + dt, yn + k1)

k3 = dt y′(tn + 0.5 dt, yn + 0.25k1 + 0.25k2)

yn+1 = yn +
1

6
(k1 + k2 + 4k3)

4. Classical Runge Kutta (order 4):

k1 = dt y′(tn, yn)

k2 = dt y′(tn + 0.5 dt, yn + 0.5 k1)

k3 = dt y′(tn + 0.5 dt, yn + 0.5 k2)

k4 = dt y′(tn + dt, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

3 Butcher table

There is a standard format for Runge Kutta methods. This allows a rule of s stages to be summarized by
an s× s array of numbers known as a Butcher table. The general form is:

c1 a1,1 a1,2 ... a1,s
c2 a2,1 a2,2 ... a2,s
...
cs as,1 as,2 ... as,s

b1 b2 ... bs

This table is interpreted as follows:

The value of yn+1 is computed using the b coefficients and the values of the s stages k1 through ks:

yn+1 = yn +

s∑
i=1

bi ki

2

The value ci is actually the sum of the values ai,j , and is used to determine the value of time at which the
derivative f(t, y) is to be evaluated at the i-th stage. Specifically:

t = ti + ci dt

The values ai,: are used to compute the y argument of f(t, y) at the i-th stage. Specifically:

yn+1 = yn +

2∑
i=1

ai,j kj

This means that the i-th stage is computed by

ki = dt f(t, y) = dt f(ti + ci dt, yn +
2∑

i=1

ai,j kj)

For an explicit Runge-Kutta scheme, the Butcher table is lower triangular.

Thus, the table for the Runge-Kutta scheme of order 4 is

0
1
2

1
2

1
2 0 1

2
1 0 0 1 0

1
6

2
6

2
6

1
6

If you compare the Butcher table to the original description, you can see how the information has been
arranged:

k1 = dt y′(tn, yn)

k2 = dt y′(tn + 0.5 dt, yn + 0.5 k1)

k3 = dt y′(tn + 0.5 dt, yn + 0.5 k2)

k4 = dt y′(tn + dt, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

4 Euler is an rk1 method

Assume we have already computed yn, and have chosen a stepsize dt. The computation of the next ap-
proximation, yn+1 by Runge Kutta method involves computing quantities known as stages. Here we will
symbolize these quantities by subscripted variables k. The Euler method involves just a single stage, k1.
Each iteration looks like this:

k1 = dt y′(tn, yn)

yn+1 = yn + k1

Because the Euler method is so simple, it’s not clear why we create the temporary variable k1, but as we
look at higher order methods, this approach will make sense.

3

5 Exercise: Write an rk1 code

Start from this pseudocode, and create a MATLAB file called rk1.m which implements the Euler method
using the Runge-Kutta format:

1 Name : rk1
2 Input : yprime , n , tspan , y0
3 Output : t , y
4
5 yprime eva lua t e s the r i g h t hand s i d e o f the ODE.
6 n i s the number o f s t ep s to take .
7 tspan i s a vec to r conta in ing f i r s t and l a s t t imes .
8 y0 i s a vec to r conta in ing the i n i t i a l c ond i t i on .
9

10 t i s a vec to r o f computed t imes .
11 y i s a vec to r o f computed ODE so l u t i o n s .
12
13 BEGIN FUNCTION
14 Set t to equa l l y spaced va lue s in tspan (1) to tspan (2) .
15 Set dt to the s ize o f s i n g l e time step .
16 Set the f i r s t entry o f y to y0 .
17
18 LOOP N TIMES ON I
19 Set k1 to dt t imes the d e r i v a t i v e at t (i) and y (i)
20 Set the next y (i +1) to y (i) p lus k1
21 END LOOP
22
23 END FUNCTION

Listing 1: Pseudocode for rk1.m

6 Exercise: Test the rk1 code

Consider the following expsin test problem:

y′(t) = cos(t) ∗ y
y(0) = 1.0

yexact = esin(t)

Create a file expsin.m which accepts the current values of t and y, and returns the value of the right hand
side of the ODE.

Use your rk1() code to take 100 steps, from 0.0 to 10.0. Make a plot of the solution (t,y(t)).

How can you judge whether your results are close to the correct solution?

7 Heun’s algorithm is an rk2 method

The Heun ODE solver can be written in the following RK form:

k1 = dt y′(tn, yn)

k2 = dt y′(tn+1, yn + k1)

yn+1 = yn + 0.5 k1 + 0.5 k2

Thus, the method involves the computation of two stages, k1 and k2, which are then combined to form the
solution estimate. Heun’s algorithm has order 2, so it is more accurate than the Euler method.

4

8 Exercise: Write and test an rk2 code

Make a copy of your rk1.m file and call it rk2.m. Make the changes necessary so that it implements Heun’s
method. This should only involve inserting one new line and modifying another.

1 Name : rk2
2 Input : yprime , n , tspan , y0
3 Output : t , y
4
5 yprime eva lua t e s the r i g h t hand s i d e o f the ODE.
6 n i s the number o f s t ep s to take .
7 tspan i s a vec to r conta in ing f i r s t and l a s t t imes .
8 y0 i s a vec to r conta in ing the i n i t i a l c ond i t i on .
9

10 t i s a vec to r o f computed t imes .
11 y i s a vec to r o f computed ODE so l u t i o n s .
12
13 BEGIN FUNCTION
14 Set t to equa l l y spaced va lue s in tspan (1) to tspan (2) .
15 Set dt to the s ize o f s i n g l e time step .
16 Set the f i r s t entry o f y to y0 .
17
18 LOOP N TIMES ON I
19 Set k1 to dt t imes the d e r i v a t i v e at t (i) and y (i)
20 Set k2 to dt t imes the d e r i v a t i v e at t (i)+dt and y (i)+k1 .
21 Set the next y (i +1) to the prev ious y p lus (k1+k2) /2 .
22 END LOOP
23
24 END FUNCTION

Listing 2: Pseudocode for rk2.m

Now repeat the experiment involving the expsin() problem, using your rk2 code, and plot the resulting
solution.

9 Comparing rk1 and rk2 gives us an error estimate

We know that one way to get an error estimate is to compute the difference of two approximate solutions of
different order. If we treat the higher order result as though it were the exact solution, then the difference
gives us an error estimate ... for the lower order result.

Thus, if we compute vectors of approximate solutions using rk1 and rk2, we can compare them after the
computation to make an estimated error plot.

Run your rk1 and rk2 codes, saving the solution results as y1 and y2. Also compute the exact solution at
the times t by running y=expsin exact(t).

Now make a single plot that display three error measures together:

• (t,abs(y1-y2)) in red
• (t,abs(y-y1)), in green
• (t,abs(y-y2)), in blue

Your red line represents our attempt to estimate the error. Does it come close to either the green line (error
in low order approximation) or the blue line (error in high order approximation)?

5

10 Combining rk1 and rk2 gives us an efficient error estimate

The computations in rk1 are actually duplicated in rk2 exactly. In this sense, the rk1 code is “embedded”
in the rk2 code. We can make a new rk12 code which makes this clear, and which allows us to compute the
error estimates as we go.

Create a new file rk12.m by copying your rk2.m file and modifying it to match this pseudocode:

1 Name : rk12
2 Input : yprime , n , tspan , y0
3 Output : t , y , e
4
5 yprime eva lua t e s the r i g h t hand s i d e o f the ODE.
6 n i s the number o f s t ep s to take .
7 tspan i s a vec to r conta in ing f i r s t and l a s t t imes .
8 y0 i s a vec to r conta in ing the i n i t i a l c ond i t i on .
9

10 t i s a vec to r o f computed t imes .
11 y i s a vec to r o f computed ODE so l u t i o n s .
12 e i s a vec to r o f error e s t imate s
13
14 BEGIN FUNCTION
15 Set t to equa l l y spaced va lue s in tspan (1) to tspan (2) .
16 Set dt to the s ize o f s i n g l e time step .
17 Set the f i r s t entry o f y to y0 .
18
19 LOOP N TIMES ON I
20 Set k1 to dt t imes the d e r i v a t i v e at time t (i) and y (i)
21 Set y1 to y (i) + k1
22 Set k2 to dt t imes the d e r i v a t i v e at time t (i)+dt and y (i)+k1 .
23 Set y2 to y (i) p lus (k1+k2) /2 .
24 Set y (i +1) to y2
25 Set e (i +1) to abs (y2 − y1)
26 END LOOP
27
28 END FUNCTION

Listing 3: Pseudocode for rk12.m

The quantity y1 is the order 1 Euler estimate, while y2 is the Heun order 2 estimate, and their difference is
used as our approximate error.

Make sure that your new code is working properly by using it to rerun the expsin test.

To get an idea of how the individual errors can grow, try this command:

1 [t , y , e] = rk12 (@(t , y) exps in (t , y) , n , tspan , y0) ;
2 plot (t , y , ’b− ’ , t , cumsum(abs (e)) , ’ r− ’)

11 An adaptive ODE method

Now suppose that we want to do an adaptive computation, so that we will not be specifying a number of
steps n, from which we can determine a fixed value for dt.

Instead, the user specifies an initial value for dt, and an error tolerance tol. Now, after our rk12 code takes
a single step, we compute the error estimate e and do the following:

• if tol * dt < e, set dt = dt/2 and recompute the step;
• if e < 16 * dt, accept the step, but also set dt=2*dt for the next step;
• otherwise, accept the step, and leave dt alone.

6

1 Name : rk12 adapt
2 Input : yprime , tspan , y0 , dt , t o l <−−Note : No ”n” i s input !
3 Output : t , y , e
4
5 yprime eva lua t e s the r i g h t hand s i d e o f the ODE.
6 tspan i s a vec to r conta in ing f i r s t and l a s t t imes .
7 y0 i s a vec to r conta in ing the i n i t i a l c ond i t i on .
8 dt i s a sugge s t i on for the f i r s t s t e p s i z e
9 t o l i s a l o c a l error t o l e r an c e

10
11 t i s a vec to r o f computed t imes .
12 y i s a vec to r o f computed ODE so l u t i o n s .
13 e i s a vec to r o f error e s t imate s .
14
15 BEGIN FUNCTION
16 Set i to 1
17 Set t (1) to tspan (1)
18 Set y (1) to y0
19
20 WHILE T(I) < TSPAN(2)
21
22 LOOP FOREVER
23
24 Set k1 to dt t imes the d e r i v a t i v e at time t (i) and y (i)
25 Set y1 to y (i) + k1
26 Set k2 to dt t imes the d e r i v a t i v e at time t (i)+dt and y (i)+k1 .
27 Set y2 to y (i) p lus (k1+k2) /2 .
28
29 Set t (i +1) to t (i) + dt
30 Set y (i +1) to y2
31 Set e (i +1) to abs (y2 − y1)
32
33 i f t o l ∗ dt < e (i +1)
34 dt = dt / 2 (and repeat LOOP FOREVER)
35 e l s e i f e (i +1) < t o l ∗ dt / 16 .0
36 dt = dt ∗ 2
37 break out o f LOOP FOREVER
38 else
39 break out o f LOOP FOREVER
40 end
41
42 END LOOP FOREVER
43
44 i = i + 1
45
46 END WHILE
47
48 END FUNCTION

Listing 4: Pseudocode for rk12 adapt.m

12 Computing Assignment #11

Try to get this adaptive code working. Test it on the expsin example, using initial stepsize dt=0.1 and
tol=0.1. Report the number of steps taken (that’s the length of the y vector). Also report the sum of the
absolute value of the entries of e.

Turn in: your program hw11.m by Friday, November 8.

7

