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A discrete differential equation takes many little steps.

ODE’s by the Euler method

Given an ODE: y′ = f(t, y), y(t0) = y0, compute a sequence of sample values (ti, yi) that approximate
the solution.

1 Euler’s method

An initial value problem (IVP) is a common example of an ordinary differential equation. We are interested
in a quantity that varies with time, which we denote by y(t). We are told that, at time t0, the function has
the value y0. Moreover, we are told that the function changes over time with a derivative f(t, y). In some
cases, it is possible to determine an exact formula for y(t), but in general this is not possible. Instead, we
will seek to estimate the value of y at a sequence of times t0, t1, ..., T = tfinal.

We already know y0. Euler’s method is based on the idea that, since we know y0, a good approximation for
y1 is simply

y(t1) ≈ y1 = y0 + dt f(t0, y0)

where dt = t1 − t0, the stepsize in time. If we have estimated y1, we can then make an estimate for y2, and
proceed in this way for as many steps as we like. It’s also possible that we will change the value of dt as we
move along, although for now we will assume dt is a fixed quantity. A general step of the method can be
written

yi+1 = yi + dt f(ti, yi)

Denote ei ≡ y(ti)−yi. The error in computing yi has two parts: there is already an error in our computation
of yi−1. In fact, that’s ei−1. On top of that is the new error we make in predicting yi using the update
dt f ′(ti−1, yi−1). It was shown in class that this second part of the error behaves like dt2.
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Now by the time we reach T = tfinal, the error in yT is affected by all the errors that came before it. It
turns out that, if we hold T fixed, and seek more accurate solutions by reducing dt, then the error at yT will
behave like dt.

Thus, roughly speaking, the error behavior is quadratic in dt on a single step, and linear in dt when we
consider the solution at some fixed time such as T .

In this lab, we will look at how to:

• implement Euler’s method;
• set up and solve a differential equation;
• compare the computed and exact solutions;
• plot the computed and exact solutions;
• access MATLAB’s ODE solvers;
• computed solution improves as we reduce dt;
• apply Euler’s method to a higher-order differential equation.

2 Example: Approximate solution of y′ = 2t− 2

Let us consider the IVP:

y′(t) = 2t− 2

y(0) = 10.0

and suppose we want to estimate y(1.0). If we use a fixed stepsize dt = 1/4, then we have

y_0 = 10.000

y_1 = y_0 + dt * y’(t_0) = 10.000 + 0.25 * -2.0 = 9.500

y_2 = y_1 + dt * y’(t_1) = 9.500 + 0.25 * -1.5 = 9.125

y_3 = y_2 + dt * y’(t_2) = 9.125 + 0.25 * -1.0 = 8.875

y_4 = y_3 + dt * y’(t_3) = 8.875 + 0.25 * -0.5 = 8.750

In other words, to compute the sequence of values of y, we repeatedly loop over the following statement:

1 y ( i +1) = y( i ) + dt ∗ f ( t ( i ) , y ( i ) )

Thus, a simple Euler computation might be:

1 n = 4 ;
2 a = 0 . 0 ;
3 b = 1 . 0 ;
4 dt = 0 . 2 5 ;
5 t = linspace ( a , b , n + 1 ) ;
6 y = zeros ( n + 1 , 1 ) ;
7 y (1 ) = 10 . 0 ;
8 for i = 1 : n
9 y ( i +1) = y( i ) + dt ∗ ( 2 . 0 ∗ t ( i ) − 2 .0 ) ;

10 end

A better Euler computation would separate the data for our problem, the Euler computation itself, and the
derivative into separate bits of code:

1 n = 4 ;
2 a = 0 . 0 ;
3 b = 1 . 0 ;
4 y0 = 10 . 0 ;
5 [ t , y ] = eu l e r ( @( t , y ) quadrat i c pr ime ( t , y ) , n , a , b , y0 ) ;
6 plot ( t , y ) ;

Listing 1: Specifying the data for the quadratic problem.
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1 function [ t , y ] = eu l e r ( yprime , n , a , b , y0 )
2
3 t = linspace ( a , b , n + 1 ) ;
4 t = t ’ ;
5 dt = ( b − a ) / n ;
6
7 m = length ( y0 ) ;
8 y = zeros ( n + 1 , m ) ;
9 y ( 1 , : ) = y0 ( : ) ;

10 for i = 1 : n
11 y ( i +1 . : ) = y ( i , : ) + dt ∗ yprime ( t ( i ) , y ( i , : ) ) ;
12 end
13 return
14 end

Listing 2: A general Euler code.

1 function value = quadrat i c pr ime ( t , y )
2 value = 2 .0 ∗ t − 2 . 0 ;
3 return
4 end

Listing 3: The derivative code for the quadratic problem.

3 MATLAB conventions for ODE’s

Later, we will be interested in using some of MATLAB’s built-in ODE solvers. In order to do so, it will be
necessary to follow a few conventions when writing the codes that define our ODE’s. Primarily, we need
to create a function that evaluates the derivative, using a template similar to what we did above for the
quadratic problem:

1 function value = funct ion name ( t , y )
2 value = function formula
3 return
4 end

We will also be dealing with situations in which the solution y is a vector, in which case the derivative y′

is also a vector. To follow MATLAB conventions, the derivative function must return a row vector result.
This can be guaranteed by separating the individual components by commas in the vector notation:

1 function value = funct ion name ( t , y )
2 u = y (1) ;
3 v = y (2) ;
4 w = y (3) ;
5 dudt = u .ˆ2 + u∗v ;
6 dvdt = 2 .0 + t ;
7 dwdt = sin ( w ∗ t ) ;
8 va lue = [ dudt , dvdt , dwdt ] ;
9 return

10 end

4 Exercise: A problem with quadratic solution

A formula for the exact solution of our quadratic problem, for any initial condition y0, is

y(t, y0) = t2 − 2t+ y0
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We can use the quadratic euler(n,a,b,y0) function, with various values of n, and fixed arguments a=0.0,
b=2.0, y0=10.0 to estimate the solution at points between 0 and 2, using a stepsize dt = 2

n . We claimed
that the error in a single step is proportional to dt2, and the error at a fixed location is proportional to dt
(smaller steps, but more of them.)

Define the first-step error as:

1 e (2 ) = y (2)−quadra t i c exac t ( t (2 ) , y0 )

and verify the first claim:

n t(2) y(2) e(2)

2

4

8

16

32

64

128

Define the last-step error as:

1 e (n+1) = y(n+1)−quadra t i c exac t ( t (n+1) , y0 )

and verify the second claim:

n t(n+1) y(n+1) e(n+1)

2

4

8

16

32

64

128

5 Some test problems

• Quadratic:

y′(t) = 2t− 2

y(0.0) = 10.0

yexact(t) = t2 − 2t+ 10

• Exponential:

y′(t) = y

y(0.0) = 1.0

yexact(t) = et

• Negative exponential: (λ = 1 easy, 100 very hard)

y′(t) = −λy
y(0.0) = 1.0

yexact(t) = e−λt
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• Predator/prey (system of two equations)

r′(t) = 2r − 0.001 ∗ r ∗ f
f ′(t) = −10f + 0.002 ∗ r ∗ f
r(0.0) = 5000

f(0.0) = 100

• Linear pendulum (second order system):

y”(t) = −y(t)

y(0.0) = u

y′(0.0) = v

yexact(t) = u cos(t) + v sin(t)

• Nonlinear pendulum with air resistance (second order system)

y”(t) = −αy′(t)− sin(y(t))

y(0.0) = u

y′(0.0) = v

6 Handling a system of first order ODE’s

The Euler method can easily apply to a system of several first order ODE’s. We are given initial values for
several variables, and the rate of change for each. We use the Euler method to advance each variable to the
next time, and continue in this way. The main new feature is that our unknown y and our derivative y′ are
now vectors.

Thus, the predator prey problem can be restated in terms of the vector y = [r, f ]:

y′(t) =

[
2y1 − 0.001y1y2
−10y2 + 0.002y1y2

]
y(0.0) =

[
5000
100

]
This problem has a nice solution which we can approximate well if we take a small enough time step. Note
that the same euler() code can be used for a system as for a single equation.

7 Handling a second order ODE

A linear second order ODE might have the form:

w′′ + αw′ + βw = g(t, w,w′)

w(t0) = γ

w′(t0) = δ;

We make the substitutions:

y1 ← w

y2 ← w′

and noting that y′1 = y2, we have the equivalent system of two equations:

y′ =

[
y2
−αy2 − βy1 + g(t, y)

]
y(t0) =

[
γ
δ

]
and we already know how to solve this using Euler’s method.
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8 Example: Nonlinear pendulum

For the second order system represented by the nonlinear pendulum with air resistance, assuming that
α = 0.05, we could set up the Euler computation as follows:

1 function pendu lum non l inear eu l e r ( )
2
3 n = 100 ;
4 a = 0 . 0 ;
5 b = 6 .0 ∗ pi ;
6 u = 1 . 0 ;
7 v = 0 . 0 ;
8 y0 = [ u , v ] ;
9

10 [ t , y ] = eu l e r ( @( t , y ) pendulum nonl inear pr ime ( t , y ) , n , a , b , y0 ) ;
11
12 return
13 end

with the derivative specified by:

1 function value = pendulum nonl inear pr ime ( t , y )
2
3 alpha = 0 . 0 5 ;
4 u = y (1) ;
5 v = y (2) ;
6
7 dudt = v ;
8 dvdt = − alpha ∗ v − sin ( u ) ;
9

10 value = [ dudt , dvdt ] ;
11
12 return
13 end

9 The Backward Euler method

The Euler method discretizes the ODE by replacing the derivative by a forward difference estimate. The
backward Euler method is derived by using a backward difference. The i-th step of the backward Euler
method can be written:

yi+1 = yi + dt f(ti+1, yi+1)

This is actually an implicit equation for yi+1. Unless f(t, y) is very simple, every step of the backward Euler
method involves approximately solving this equation.

For our negative exponential test problem, however, f is in fact very simple. So we can rewrite the backward
Euler method in this case as

yi+1 = yi + dt (−λyi+1)

yi+1 + dt λ yi+1 = yi

yi+1 =
yi

1.0 + dtλ

Assuming 0 < λ, our solution will decay monotonically, and always remain between 0 and 1, unlike the
behavior of the forward Euler solution.

If we don’t have a simple way of simplifying the backward Euler step, we may have to use fixed point iteration
or some kind of nonlinear equation solver to advance our solution on every step.
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10 Computing Assignment #10

Consider the predator test problem, with the given initial conditions. We wish to solve this equation over
the time interval [0,5]. Find a value n for the number of time steps so that the solution doesn’t blow up,
and in fact behaves almost periodically.

You might start from copies of pendulum euler.m and pendulum prime.m, and make the necessary changes.

Since the solution y is a vector, the MATLAB command plot(t,y) will make a standard plot that shows
both components together. Call the plot file that is created hw10.png.

Turn in: your program hw10.m and your plot hw10.png by Friday, November 1.
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