
Nonlinear equations:
The Regula Falsi method

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/nonlinear regula falsi/nonlinear regula falsi.pdf

Sometimes one side far outweighs the other!

The regula falsi method

Bisection only uses the sign of a function when searching for a root. Can we speed up the search using
more of the information we see?

1 A Scorecard for Bisection

We used bisection on several different functions. In all cases, our tolerance for the interval size was xtol =
10−6, for the function magnitude was xtol = 10−6, with an iteration limit itmax = 50. For each problem,
we had to specify starting points xn and xp where the function was negative and positive. The bisecton
function returned a satisfactory solution, and reported the number of steps required.

function xn xp it
cubic() 1 2 21
hump() 10 0 25
kepler() 10 0 24
lambert() 0 2 23
trig() 1 0 20
wiggle() 8 0 30

While bisection gives us very reliable performance, it can be slower and more expensive than other methods.
Can we modify the bisection algorithm in a way that keeps its reliability but speeds up the results?

2 Regula Falsi - A better idea?

On each step of the bisection method, we start with values (xn,f(xn)) and (xp,f(xp)), but we only use
the values of xn and xp to make our next estimate for the root:

x =
xn+ xp

2

1

Suppose that the magnitude of f(xn) is much less than that of f(xp). This is a clue that suggests that the
root might be closer to xn than to xp. To quantify this, we compute the linear function that goes through
our two data points (xn,f(xn)) and (xp,f(xp)):

y(x) =
f(xn) (xp− x) + f(xp) (x− xn)

xp− xn

Now if we set y = 0, we can solve the above equation to determine where the linear model predicts the root
to be:

x =
f(xn)xp− f(xp)xn

f(xn) − f(xp)

If we replace the bisection formula for the new x by this formula, we have the method known as regula
falsi, also known as the rule of false position.

In regula falsi, we are giving up the guaranteed halving of the size of the interval in exchange for a better
guess as to the location of the root. Since the new interval is no longer guaranteed to be exactly half the
size of the old one, the α ratio could be anywhere between 0 and 1. We hope that regula falsi tends to give
us values of α that are smaller than 1

2 .

Counting the number of iterations, and monitoring the value of α, will give us an idea of whether our regula
falsi code is outperforming the bisection code.

3 Pseudocode for Regula Falsi

A pseudocode description of regula falsi is almost identical to our bisection code:

1 Input : function f , negat ive and p o s i t i v e arguments xn and xp , xto l , f t o l , itmax
2
3 Begin loop
4
5 Set x to (f (xn) ∗xp − f (xp) ∗xn) / (f (xn) − f (xp))
6
7 set o ld = | xp − xn |
8
9 I f f (x) i s negat ive , r ep l a c e xn by x

10 else r ep l a c e xp by x
11
12 set new = | xp − xn |
13 set alpha = new / old
14 po s s i b l y print alpha
15
16 i f new i s l e s s than x to l and | f | i s l e s s than f t o l , s u c c e s s
17 else i f i t > itmax , f a i l u r e
18 else r epeat
19
20 End loop
21
22 Output : updated va lue s o f xm and xp and i t

Listing 1: regula falsi pseudocode.txt

4 A Scorecard for Regula Falsi

For comparison, we repeat our tests using regula falsi (RF), hoping to get successful runs with fewer iterations
(it):

2

function xn xp it (Bi) it(RF) Comment
cubic() 1 2 21 50 xtol test failed
hump() 10 0 25 50 xtol test failed
kepler() 10 0 24 50 xtol test failed
lambert() 0 2 23 41
trig() 1 0 20 50 xtol test failed
wiggle() 8 0 30 19

These results are very unsatisfactory. Only the wiggle() function showed improvement, and four of our
tests actually failed. Since the linear approximation idea seems intelligent, it’s worth trying to understand
the failures and see if we can avoid them.

5 How Regula Falsi Can Fail:

If we print the value of alpha during the humps() test, here’s some of what we see. Remember that alpha

compares the new interval to the old one, and we are hoping for values much less than 0.5:

F(10) = -5.9773

F(0) = 5.17647

Step 1: alpha = 0.4641

Step 2: alpha = 0.468366

Step 3: alpha = 0.496983

Step 4: alpha = 0.623868

Step 5: alpha = 0.664884

Step 6: alpha = 0.729801

Step 7: alpha = 0.809779

Step 8: alpha = 0.883887

Step 9: alpha = 0.936835

Step 10: alpha = 0.968109

...things get worse and worse...

Step 49: alpha = 1

Step 50: alpha = 1

After 50 iterations:

F(1.29955) = -6.21725e-15

F(1.0934) = 8.48293

We see that, rather than having alpha much less than 0.5, it quickly grows until it reaches 1. A value of 1
suggests that the interval is not being reduced at all. Actually, there is a tiny reduction, and alpha is not
1, but rather 0.999999999, but that’s pretty useless to us.

Can we understand what is happening here?

6 A lopsided prediction

We’re trying to do two things: find the root, and bracket the root.

Regula falsi does a much better job of estimating where the root is. However, it doesn’t always pay attention
to the task of shrinking both ends of the interval of uncertainty.

If the function f(x) is convex over the interval [a, b], then every secant prediction will always fall to the same
side of the root. This means that only one side of the interval of uncertainty will shrink, while the other will

3

tend to stay fixed. Once one side is very small, the values of alpha will tend to 1 as the secant prediction
never lands on the “far” side of the root.

A convex function can defeat regula falsi!

7 The Regula Falsi method - version #2

One way to diagnose the problem we encountered is to monitor the value of alpha. If our regula falsi step
gave us a value greater than 0.5, we can insist that the following step be a bisection step. That way, we
guarantee that the regula falsi code will, at worst, take twice as many steps as a bisection code.

This modification is easy, since we already have alpha available. The portion of the code that decides which
method to use looks like this:

1 b i s e c t = (0 .50 < alpha) ;
2
3 xold = x ;
4 i f (b i s e c t)
5 x = (xn + xp) / 2 . 0 ;
6 else
7 x = (xn ∗ f (xp) − xp ∗ f (xn)) / (f (xp) − f (xn)) ;
8 end

Listing 2: extract from regula falsi2.m

8 A Scorecard for Regula Falsi2

We now can test out the regula falsi #2 code (RF2):

function xn xp it (Bi) it(RF) it (RF2) Comment
cubic() 1 2 21 50 18 No longer failing!
hump() 10 0 25 50 20 No longer failing!
kepler() 10 0 24 50 26 No longer failing!
lambert() 0 2 23 41 18 better than Bi
trig() 1 0 20 50 36 No longer failing!
wiggle() 8 0 30 19 27 slightly better than Bi

4

By adding the bisection option, we have fixed the failures we saw before, but now the good results for the
other functions have significantly deteriorated. Perhaps we could try to use bisection less often, with a test
like bisect = (0.70 < alpha);?

9 The Regula Falsi method - version #3

There’s an alternative way to deal with our problem. If the function seems to be too convex for regula falsi
to work well, we could try to adjust the function. Presumably, the function value on the “neglected” side of
the interval is rather large. If we notice that we are not reducing that side of the interval, we could simply
rescale that function value, dividing it by 2, and repeatedly, if necessary, until an estimated root is predicted
on that side.

To do this, imagine in the diagram above that we halve the size of f(B). In that case, the intersection of the
secant line with the x-axis will move towards B. If we halve it often enough, eventually the intersection will
be between the root and B, and so we will be able to shrink the interval.

The details are a little involved. The interesting action happens when we update one endpoint. At that
time, we need to check whether we have updated that endpoint at least twice in a row, in which case we are
going to decrease the function value at the opposite end. To see the whole story, here is the full MATLAB
code:

1 function [xn , xp , i t] = r e g u l a f a l s i 2 (f , xn , xp , xto l , f t o l , itmax)
2
3 i t = 0 ;
4 fn = f (xn) ;
5 fp = f (xp) ;
6 x = xn ;
7 fx = f (xn) ;
8
9 while (t rue)

10
11 i t = i t + 1 ;
12 xold = x ;
13 f xo ld = fx ;
14 x = (xn ∗ fp − xp ∗ fn) / (fp − fn) ;
15 fx = f (x) ;
16 o ld = abs (xp − xn) ;
17
18 if (fx < 0.0)
19 xn = x;
20 fn = fx;
21 if (fxold < 0.0)
22 fp = fp / 2.0;
23 end
24 else
25 xp = x;
26 fp = fx;
27 if (fxold > 0.0)
28 fn = fn / 2.0;
29 end
30 end
31
32 new = abs (xp − xn) ;
33 alpha = new / old ;
34 fpr intf (1 , ’ Step %d : alpha = %g\n ’ , i t , alpha) ;
35
36 i f ((new <= xto l) \&\& (abs (f (x)) <= f t o l))
37 return
38 end
39 i f (itmax <= i t)

5

40 return
41 end
42
43 end
44
45 return
46 end

Listing 3: regula falsi2.m

10 A Scorecard for Regula Falsi3

We now can test out the regula falsi #3 code (RF3).

function xn xp it (Bi) it(RF) it(RF2) it (RF3)
cubic() 1 2 21 50 18 6
hump() 10 0 25 50 20 9
kepler() 10 0 24 50 26 8
lambert() 0 2 23 41 18 9
trig() 1 0 20 50 36 6
wiggle() 8 0 30 19 27 15

With some careful programming, we seem to have recovered the reliability of the bisection method, and the
speed of regula falsi, while eliminating the difficulty caused by convexity.

11 No Assignment for this lab!

6

