
Nonlinear equations:
The bisection method

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/nonlinear bisection/nonlinear bisection.pdf

Why does a function cross the axis? To get to the other sign!

Mathematics provides methods for finding solutions to some algebraic equations like x2 − 2x − 15 = 0.
However, for most equations with any kind of complication, there is no way to come to an exact solution for
x. The bisection method provides a computational path to solving a nonlinear equation.

The bisection method

Given a nonlinear equation:

• rewrite it as f(x) = 0
• find points a and b at which f(x) takes opposite signs;
• shrink this interval until you are close enough to a solution.

1 Example: Kepler’s equation

Kepler’s equation comes from an astronomical problem. It relates an important quantity, E, the eccentric
anomaly of an orbit, to two easily measured items, the mean anomaly M and the orbital eccentricity e:

M = E − e sin(E)

E is the “height” difference between an ideal and elliptic orbit.

1

Although we may know specific values of M and e, it is not possible to rewrite this equation to determine
the exact value of E except for a few special cases. Suppose that we have determined that M = 5 and e = 2.
To determine the value of E, we need to solve the equation:

5 = E − 2 sin(E)

We rewrite this equation in functional form:

f(E) = 5− E + 2 sin(E) = 0

Assuming that E∗ is an exact solution of this equation, we have three common measures of error:

• |E∗ − E| is the (absolute) error;

• |E
∗−E|
|E∗| is the relative error;

• |f(E)| is the (absolute) residual error;

To begin our investigation, let’s write a MATLAB function to evaluate the residual:

1 function value = kep l e r (x)
2 value = 5 .0 − x + 2 .0 ∗ sin (x) ;
3 return
4 end

Listing 1: kepler.m

We use plotting to search for a region in which the function crosses the axis:

By evaluation, we see that kepler(0) = 5 and kepler(10) = −6.0880. As E moves from 0 to 10, f(E) moves
from positive to negative. Assuming f(E) is continuous, there must be a solution E∗ somewhere in [0, 10].
Looking only at the change in sign, our best guess might be that the solution is near E = 5.

In fact, kepler(5) = −1.9178, which suggests we can find the root in [0, 5]. And if we keep looking at the
midpoint of our current interval, we can repeatedly cut our uncertainty in half, and get as close to the root
as we want (up to the limits of the machine accuracy).

2 Pseudocode #1: Bisection

Assume we know xn and xp so that f(xn) < 0 and f(xp) > 0. Our bisection algorithm might look like:

1 Input : function f , negat ive and p o s i t i v e arguments x− and x+
2
3 Loop a few times
4
5 Set x to the average o f x− and x+

2

6
7 I f f (x) i s negat ive , r ep l a c e x− by x
8 else r ep l a c e x+ by x
9

10 End loop
11
12 Output : updated va lue s o f x− and x+

Listing 2: bisection1 pseudocode.txt

3 MATLAB implementation #1:

Our simple bisection algorithm needs to stop at some point, so let’s just let it run 10 steps:

1 function [xn , xp] = b i s e c t i o n 1 (f , xn , xp)
2
3 for i t = 1 : 10
4
5 x = (xn + xp) / 2 . 0 ;
6
7 i f (f (x) < 0 .0)
8 xn = x ;
9 else

10 xp = x ;
11 end
12
13 end
14
15 return
16 end

Listing 3: bisection1.m

4 Pseudocode #2: Bisection

In class, we talked about sensible ways to tell an iteration to continue, or to stop with success or failure.
This means we need to supply an iteration limit, and tolerances on x and f(x). Our second pseudocode
might be:

1
2 Input : function f , negat ive and p o s i t i v e arguments x− and x+, xto l , f t o l , itmax
3
4 Begin loop
5
6 Set x to the average o f x− and x+
7
8 I f f (x) i s negat ive , r ep l a c e x− by x
9 else r ep l a c e x+ by x

10
11 new = | x+ − x− |
12
13 i f new i s l e s s than x to l and | f | i s l e s s than f t o l , s u c c e s s
14 else i f i t > itmax , f a i l u r e
15 else r epeat
16
17 End loop
18
19 Output : updated va lue s o f x− and x+ and i t

Listing 4: bisection2 pseudocode.txt

3

5 MATLAB implementation #2:

Our revised code might be:

1 function [xn , xp , i t] = b i s e c t i o n 2 (f , xn , xp , xto l , f t o l , itmax)
2
3 i t = 0 ;
4
5 while (t rue)
6
7 i t = i t + 1 ;
8
9 x = (xn + xp) / 2 . 0 ;

10
11 i f (f (x) < 0 .0)
12 xn = x ;
13 else
14 xp = x ;
15 end
16
17 new = abs (xn − xp)
18
19 i f (. . .
20 (new <= xto l) && . . .
21 (abs (f (x)) <= f t o l) . . .
22)
23 return
24 end
25
26 i f (itmax <= i t)
27 return
28 end
29
30 end
31
32 return
33 end

Listing 5: bisection2.m

6 Bisection for the Kepler equation

Test bisection code #2 on our Kepler equation:

1 xn = 10 . 0 ;
2 xp = 0 . 0 ;
3 x t o l = 0 .000001 ;
4 f t o l = 0 .000001 ;
5 itmax = 50 ;
6
7 [xn , xp , i t] = b i s e c t i o n 2 (@(x) kep l e r (x) , xn , xp , xto l , f t o l , itmax) ;

Listing 6: kepler bisection.m

Print statements in the script (not shown) report the following results:

1 After 24 i t e r a t i o n s :
2 F(3 . 79084) = −1.52126e−06 (negat ive)
3 F(3 . 79083) = 2.43377 e−08 (p o s i t i v e)
4
5 i t <= itmax? true
6 | xn−xp | <= xto l ? t rue

4

7 min (| f (xn) | , | f (xp) |) <= f t o l ? t rue

Listing 7: kepler bisection.txt

To apply the bisection code to another problem, write a function file to evaluate f(x), and modify the test
script by specifying appropriate points xn and xp. You might also want to adjust the tolerances or the
iteration limit.

7 Exercise: A trigonometric function

Consider the equationcos(x) = x and suppose we want to find a solution x. Use the bisection method to
approximate such a solution. To do this:

1. create a function file trig.m that evaluates the function.

2. create a script file like trig bisection.m that calls bisection2() to find a zero.

3. run your script;

4. report the number of iterations required;

5. report as your solution x the average of the two endpoints;

6. report the value of f(x);

8 MATLAB implementation #3: ALPHA, the update ratio:

In class, the quantity α or “alpha” was defined as the ratio α = this x update
previous x update . For the bisection method,

we can think of α as the ratio of the new interval to the old one, so that for bisection, α is always 1
2 .

Nonetheless, here is how we could go through the motions of computing α:

1 function [xn , xp , i t] = b i s e c t i o n 3 (f , xn , xp , xto l , f t o l , itmax)
2
3 i t = 0 ;
4
5 while (t rue)
6
7 o ld = abs (xp − xn) ;
8
9 i t = i t + 1 ;

10
11 x = (xn + xp) / 2 . 0 ;
12
13 i f (f (x) < 0 .0)
14 xn = x ;
15 else
16 xp = x ;
17 end
18
19 new = abs (xp − xn) ;
20 alpha = new / old ;
21
22 i f (. . .
23 (abs (xn − xp) <= xto l) && . . .
24 (abs (f (x)) <= f t o l) . . .
25)
26 return
27 end
28
29 i f (itmax <= i t)
30 return
31 end

5

32
33 end
34
35 return
36 end

Listing 8: bisection3.m

9 Fixed point iteration

In class, we saw a general method to solve nonlinear equations, called fixed point iteration. To find x∗ that
satisfies f(x) = 0, we repeatedly update x← g(x), where g(x) is chosen so that x∗ = g(x∗).

We found a root of f(x) = 3 ∗ x− ex = 0 by using the fixed point function g(x) = ex/3. Pseudocode for this
computation would be:

1 itmax <−− ?
2 x to l <−− ?
3 f t o l <−− ?
4
5 i t <−− 0
6 xold <−− 0
7 x <−− i n i t i a l va lue (1 . 0 for t h i s case)
8 o ld <−− 0
9 new <−− 0

10
11 Loop
12
13 i t <−− i t + 1
14 xold <−− x
15 x <−− g (x) (x = exp(x) /3 ; for t h i s case)
16 o ld <−− new
17 new <−− abs (x − xold)
18
19 i f o ld i s not 0 , alpha <−− new / old , print alpha
20 i f new <= xto l and | f (x) | <= f t o l , break from loop with suc c e s s
21 i f i t > itmax , break from loop with f a i l u r e
22
23 End loop
24
25 Pr int x , f (x)
26
27 function value = f (x)
28 value <−− ? ; (va lue = 3 ∗ x − exp (x) ; for t h i s case)
29 return
30 end

Listing 9: fixed point pseudocode.txt

10 Assignment #3: Implement and test a fixed point iteration

Use the pseudocode above as a guide, write a script called hw3.m which uses fixed point iteration to find a
root of the function f(x) = x2 − 5. Use the fixed point function g(x) = 1 + x− x2/5.

Turn in: your file hw3.m by Friday, September 13.

6

