
MATLAB Introduction
MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/matlab intro/matlab intro.pdf

Hailstone numbers cycle for a while and then drop unpredictably!

MATLAB Intro

Let’s model a particular problem, and see how MATLAB can help us.

1 The HUMP function

Suppose we are interested in the function:

y =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6.0

We can create a MATLAB function hump.m, so that we only have to type this formula correctly once. Note
that division is done with a period-slash, squaring is done with a “period-caret”, and we have to be careful
about the parentheses:

1 function y = hump (x)
2 y = 1 .0 . / ((x − 0 .3) . ˆ2 + 0.01) . . .
3 + 1 .0 . / ((x − 0 .9) . ˆ2 + 0.04) . . .
4 − 6 . 0 ;
5 return
6 end

Then we can ask for the value at 2.0 by writing y=hump(2.0), or the value at a variable x by writing
y=hump(x) and so on.

Suppose we wanted to know the value of the function at 6 equally spaced points in the interval [0, 1]? We
could type the command 6 times, but a better option would be to somehow get all the answers at once. We
can create a list of the x values and get our answers back like this:

1

1 x = [0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0] ;
2 y = hump (x)

We have just learned that we can create a list, or vector, by enclosing a sequence of values in square brackets.
Now suppose we wanted to get a similar table of values between 1 and 2. We can write

1 x = x + 1 . 0 ;
2 y = hump (x)

That is, we can do simple arithmetic to all the numbers in a vector, using the same commands we are familar
with for normal arithmetic, like

1 y = 2 ∗ x
2 z = x − sin (x)

The other thing to notice is that [0, 0.2, 0.4, 0.6, 0.8, 1.0] is a row vector. It has dimensions 1× 6, 1 row and
6 columns. If we had wanted to create a column vector, we would separate our list by semicolons:

1 w = [0 ; 0 . 2 ; 0 . 4 ; 0 . 6 ; 0 . 8 ; 1 . 0]

Notice that you can’t add the vectors x and w, because they have different shapes. You can use the transpose
operator, an apostrophe, to flip between the row and column formats. Look at

1 v = w’

Suppose we wondered about the minimum and maximum values of our hump(x) function over the interval
[0, 2]. A good way to estimate this would be to sample the function at a lot of places. Instead of creating a
very long x vector, we can use the linspace() function:

1 x = linspace (0 . 0 , 2 . 0 , 101) ;
2 y = hump (x) ;
3 min (y)
4 max (y)
5 mean (y)

Finally, to actually see our function, we can plot the x and y values:

1 plot (x , y)
2 print (’−dpng ’ , ’hump . png ’) % Saves a copy o f your p l o t .

There are several ways to make this plot nicer, which we will see in the plotting lab.

2 Let’s make hail!

Start with 10. Because it’s even, drop it to 5. Because that’s odd, triple it and add 1 to get 16. Repeatedly
divide by 2 to get 8, 4, 2, 1. We just did a hailstone sequence: start with any integer, get the next number
by halving an even value, or if odd, tripling and adding 1.

This seems like a task the computer can do. It would be convenient to have a function hail sequence(n)

which is given our starting value and prints out the sequence as it is computed. How can we set this up?
Our idea would be something like this:

1 function ha i l s e qu enc e (n) % Note : we have NO output
2
3 i f n i s 1 , we are done
4
5 i f n i s even , d i v id e i t by 2
6 or i f n i s odd , mult ip ly i t by 3 and add 1 .
7
8 otherwi se repeat

2

To determine if n is even, we can call mod(n,2), which returns the remainder when n is divided by 2. If this
is 0, then it’s an even number.

We use if(condition) and else statements to control what we do to n.

How do we handle the repetition? The MATLAB for statement lets us repeat something a fixed number of
times. But we want to repeat something until something happens, which could be any number of repetitions.
For that, we need the while() statement, which has the form:

1 while (cond i t i on)
2 statements to be repeated
3 end

Simple conditions include:

1 n == 1 n i s equal to 1
2 n ˜= 2 n i s NOT equal to 2 % That ’ s the ” tw idd l e ” charac ter
3 n < 3 n i s l e s s than 3
4 n >= 4 n i s g r e a t e r than or equal to 4

So our function looks like this:

1 function ha i l s e qu enc e (n)
2
3 n % Print the f i r s t va lue
4
5 while (n ˜= 1)
6
7 i f (mod (n , 2) == 0)
8 n = n / 2
9 else

10 n = 3 ∗ n + 1
11 end
12
13 end
14
15 return
16 end

Does hail sequence() work? Let’s try it on n = 7, 10, 12, , 19.

3 How long is a hailstone’s journey?

It’s interesting that the number of steps varies so much from one starting point to the next. Can we find an
easy way to record this information? Suppose we modify hail sequence() so that it doesn’t print the values
that are computed, but just counts them, and returns that as output?

1 function count = ha i l c oun t (n)
2
3 count = 0 ;
4
5 while (n ˜= 1)
6
7 i f (mod (n , 2) == 0)
8 n = n / 2 ;
9 else

10 n = 3 ∗ n + 1 ;
11 end
12
13 count = count + 1 ;
14

3

15 end
16
17 return
18 end

Now we can use a for loop to make a table of these values.

We can even make a plot. We don’t want to connect the successive values, but just show them as dots. We
use a modified version of the plot command:

1 x = zeros (150 , 1) ;
2 y = zeros (150 , 1) ;
3
4 for n = 1 : 150
5 x (n) = n ;
6 y (n) = ha i l c oun t (n)
7 end
8
9 plot (x , y , ’ bo ’) % ’bo ’ means p l o t data us ing b lue c i r c l e s .

10
11 print (’−dpng ’ , ’ h a i l p l o t . png ’) % Save a copy o f your p l o t

4 Assignment #1

Send me, via email, a copy of your plot hail plot.png. This is due by Friday evening, August 30th.

4

