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Each Lagrange basis function touches the data at a single point.

In mathematics, we think of functions as formulas y = f(x) that allow us to produce a y for any x. In
reality, we often have a small set of data pairs (xi, yi), and we wish to create a simple formula p(x), called
an interpolant, that matches our data, and allows us to “predict” y values for new x values.

If there really was a formula f(x) that generated our data, we want to compare f(x) and p(x) and see how
well our interpolant approximated the actual formula.

The polynomial interpolation problem

Given n pairs of data values (xi, yi),

• determine a polynomial p(x) so that, for 1 ≤ i ≤ n:

p(xi) = yi

• if the data was generated by a function f(x), estimate the error |f(x)− p(x)|;
• consider the behavior of the error as n is increased;

If only one data pair is known, the interpolant is the corresponding constant function: p(x) = y1. Things
get more interesting when n = 2:

1 The case of two data values:

If two sets of data are given, we are asking for a linear interpolant. We can write:

p(x) = y1 +
y2 − y1
x2 − x1

(x− x1)
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As shown in class, if the data comes from a function f(x), then we have

error = f(x)− p(x) =
f ′′(ξ)

2!
(x− x1)(x− x2)

In discussing Taylor series, we have seen errors bounded by O(h2); the quadratic factor (x − x1)(x − x2)
reminds us of such behavior, but here it is a little more complicated. When it is clear that we are speaking
about a particular set of n data points, we may use the shorthand ω(x) to refer to the function formed by
this product:

ω(x) = (x− x1)(x− x1) . . . (x− xn)

Although our linear function matches the data, it will be helpful if we rewrite that formula so that we
can guess how to generalize it when there is more data to interpolate. We begin by formulating two basis
functions:

`1(x) =
x− x2
x1 − x2

`2(x) =
x− x1
x2 − x1

which allows us to rewrite our linear function as:

p(x) = y1 `1(x) + y2 `2(x)

The second version of the formula makes it much easier to see what is going on. If we want to move to 3
data points, we just have to find a set of three basis functions with the right properties.

2 Example: Linear interpolation of ex

1 x data = [ 0 , 1 ] ;
2 y data = exp ( x data ) ;
3
4 x = linspace ( −0.5 , 1 . 5 , 101 ) ;
5 y = exp ( x ) ;
6 y2 = y data (1 ) ∗ ( x data (2 ) − x ) / ( x data (2 ) − x data (1 ) ) . . .
7 + y data (2 ) ∗ ( x − x data (1 ) ) / ( x data (2 ) − x data (1 ) ) ;
8 plot ( x , y , ’b− ’ , x , y2 , ’ r− ’ )

Listing 1: exp linear.m

We see that given any pair of (x, y) data values, we can write a formula for a linear polynomial that matches
that data. Can it be this easy when there is more data?

3 Example: Quadratic interpolation of ex

If we have three pairs of data, we need three basis functions, with the properties

`1(x1) = 1 `1(x2) = 0 `1(x3) = 0
`2(x1) = 0 `2(x2) = 1 `2(x3) = 0
`3(x1) = 0 `3(x2) = 0 `3(x3) = 1

The formula for `1(x) is simply

`1(x) =
x− x2
x1 − x2

x− x3
x1 − x3

and you should see that this suggests formulas for all three basis functions. But instead of writing them out,
let’s try to automate that process:
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1 function value = e l l ( j , x data , x )
2 % e l l e va l ua t e s the j−th Lagrange ba s i s func t i on .
3 value = ones ( s ize ( x ) ) ;
4 n = length ( x data ) ;
5
6 for i = 1 : n
7 i f ( i ˜= j )
8 value = value .∗ ( x − x data ( i ) ) / ( x data ( j ) − x data ( i ) ) ;
9 end

10 end
11
12 return
13 end

Listing 2: ell.m

1 x data = [ 0 , 0 . 5 , 1 ] ;
2 y data = exp ( x data ) ;
3
4 x = linspace ( −0.5 , 1 . 5 , 25 ) ;
5 y = exp ( x ) ;
6 y2 = y data (1 ) ∗ e l l (1 , x data , x ) . . .
7 + y data (2 ) ∗ e l l (2 , x data , x ) . . .
8 + y data (3 ) ∗ e l l (3 , x data , x ) ;
9

10 plot ( x , y , ’b− ’ , . . .
11 x , y2 , ’ r− ’ , . . .
12 x data , y data , ’ k . ’ , ’ markers i ze ’ , 25 ) ;

Listing 3: exp quadratic.m

4 Example: Any degree interpolation of ex

It seems like our interpolant does a better job if we increase the number of data points. Assume we are
staying in the interval [a, b], which for this example is [0, 1]. Do we have to create a new function to do the
interpolation every time we increase n? Look at the changes we make:

1 n = 4 ;
2 x data = linspace ( 0 . 0 , 1 . 0 , n ) ;
3 y data = exp ( x data ) ;
4 y2 = zeros ( s ize ( x ) ) ;
5
6 x = linspace ( −0.5 , 1 . 5 , 25 ) ;
7 y = exp ( x ) ;
8 for i = 1 : n
9 y2 = y2 + y data ( i ) ∗ e l l ( i , x data , x ) ;

10 end
11
12 plot ( x , y , ’b− ’ , . . .
13 x , y2 , ’ r− ’ , . . .
14 x data , y data , ’ k . ’ , ’ markers i ze ’ , 25 ) ;

Listing 4: exp any.m

Recall that for n point interpolation, our error estimate is:

error = f(x)− p(x) =
f (n)(ξ)

n!
(x− x1)(x− x2)...(x− xn) =

f (n)(ξ)

n!
w(x)

Looking at this formula for the error, can you suggest why the exponential interpolant seems so well behaved
in [0, 1] even as we increase the value of n?
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5 Exercise: Plot the Lagrange basis functions

Given an interval [a, b], and assuming our data points are evenly spaced, we can compute and plot the
individual basis functions.

1 function ba s i s l a g r ang e ( a , b , n )
2 x data = linspace ( a , b , n ) ;
3 y data = ones ( n , 1 ) ;
4
5 x = linspace ( a , b , 101 ) ;
6
7 c l f ( ) ;
8 hold ( ’ on ’ )
9 for i = 1 : n

10 y = e l l ( i , x data , x ) ;
11 plot ( x , y , ’ l i n ew id th ’ , 3 ) ;
12 end
13 plot ( x data , y data , ’ r . ’ , ’ markers i ze ’ , 25 ) ;
14 hold ( ’ o f f ’ ) ;
15
16 return
17 end

Listing 5: basis lagrange.m

Notice that each basis function is 1 at the correct place. Also notice that the basis functions can become
negative, and they can exceed the value 1.

A set of 5 Lagrange basis functions.

Question: If I have n = 5 basis functions, what will I see if I plot y(x) = `1(x)+`2(x)+`3(x)+`4(x)+`5(x)?

6 Example: Interpolate humps(x) with increasing n

When we are interpolating a function f(x), it seems reasonable to expect that increasing the number of
interpolation points will improve the quality of our interpolant. The only thing we are sure of is that f(x)
and p(x) will agree at n points. We really don’t know what happens in between. The function ex is actually
well behaved. Let’s try interpolating the function humps(x) for a change.

To make it easy to vary n, we will write a function for which n is input:

1 function humps lagrange ( n )
2
3 x data = linspace ( 0 . 0 , 2 . 0 , n ) ;
4 y data = humps ( x data ) ;
5
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6 x = linspace ( 0 . 0 , 2 . 0 , 51 ) ;
7 y = humps ( x ) ;
8 y2 = zeros ( s ize ( x ) ) ;
9 for i = 1 : n

10 y2 = y2 + y data ( i ) ∗ e l l ( i , x data , x ) ;
11 end
12
13 plot ( x , y , ’b− ’ , . . .
14 x , y2 , ’ r− ’ , . . .
15 x data , y data , ’ k . ’ , ’ markers i ze ’ , 25 ) ;

Listing 6: humps lagrange.m

Try this function for n = 5, 9, 17 and 33:

1. does each interpolant seem to match the data?

2. do the interpolants get closer to f(x) as n increases?

3. if our error estimate is still correct, what is a reasonable explanation for this behavior?

7 Omega

In the error estimate for interpolation using nodes x1, x2, . . . xn, we saw a factor which is usually termed
“omega”, or ω(x):

ω(x) = (x− x1) ∗ (x− x2) ∗ . . . ∗ (x− xn)

which can be programmed as:

1 function value = omega ( x data , x )
2
3 n = length ( x data ) ;
4 va lue = ones ( s ize ( x ) ) ;
5
6 for i = 1 : n
7 value = value .∗ ( x − x data ( i ) ) ;
8 end
9

10 return
11 end

Listing 7: omega.m

If we have a bound for f (n)(ξ), then ω(x) can suggest how the error might vary as a function of x. Let’s
look at the interval [0, 4] and plot ω(x) for a sequence of values n = 1, 3, 5, 9, 17, 33:

1 a = 0 . 0 ;
2 b = 3 . 5 ;
3 x = linspace ( a , b , 101 ) ;
4
5 c l f ( ) ;
6 hold ( ’ on ’ ) ;
7 grid ( ’ on ’ ) ;
8 for n = [ 1 , 3 , 5 , 9 , 17 , 33 ]
9 i f ( n == 1 )

10 xdata = ( a + b ) / 2 . 0 ;
11 else
12 xdata = linspace ( a , b , n ) ;
13 end
14 w = omega ( xdata , x ) ;
15 plot ( x , w ) ;
16 l a b e l = sprintf ( ’ omega (x ) f o r n = %d ’ , n ) ;
17 t i t l e ( l a b e l ) ;
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18 pause ( 5 ) ;
19 end
20 hold ( ’ o f f ’ ) ;

Listing 8: omega plot.m

The sequence of plots should convince you that, using our equally spaced data points, the ω(x) factor can
blow up near the endpoints. This doesn’t mean that we must have large error at the endpoints, but it does
suggest that it might be much easier to have large errors near the endpoints of the interpolation interval.

8 No Assignment for this lab!
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