
MATH2070: LAB 9: Legendre Polynomials and L2 Approximation

Introduction Exercise 1
Integration Exercise 2
Legendre Polynomials Exercise 3
Orthogonality and Integration Exercise 4
Least squares approximations in L2([−1, 1]) Exercise 5
Legendre polynomial approximation Extra Credit
Fourier series
Piecewise constant approximation
Piecewise linear approximation (Extra)

1 Introduction

With interpolation we were given a formula or data about a function f(x), and we made a model p(x) that
passed through a given set of data points. We now consider approximation, in which we are still trying to
build a model, but specify some condition of “closeness” that the model must satisfy. It is still likely that
p(x) will be equal to the function f(x) at some points, but we will not know in advance which points.

As with interpolation, we build this model out of a set of basis functions. The model is then a linear
combination with coefficients c that specify how much of each basis function to use when building the model.

In this lab we will consider four different selections of basis functions in the space L2([−1, 1]). The first
is the usual monomials 1, x, x2, and so on. In this case, the coefficients c are exactly the coefficients Matlab
uses to specify a polynomial. The second is the set of Legendre polynomials, which will yield the same
approximations but will turn out to have better numerical behavior. The third selection is the trigonometric
functions, and the final selection is a set of piecewise constant functions. Advantages and disadvantages of
each for numerical computations will be presented.

Once we have our basis set, we will consider how we can determine the approximating function p(x)
as the “best possible” approximate for the given basis functions, and we will look at the behavior of the
approximation error. Since we are working in L2[−1, 1], we will use the L2 norm to measure error.

It turns out that approximation by monomials results in a matrix similar to the Hilbert matrix whose
inversion can be quite inaccurate, even for small sizes. This inaccuracy translates into poor L2 approxima-
tions. Use of orthogonal polynomials such as the Legendre polynomials, results in a diagonal matrix that can
be inverted almost without error, but the right side can be difficult and slow to compute to high accuracy. In
addition, roundoff accumulation in function reconstruction can be a serious problem. Fourier approximation
substantially reduces the roundoff errors, but is slow to compute and evaluate, although fast methods (not
discussed in this lab) can improve speed dramatically. Approximation by piecewise constants is not subject
to these sources of error until ridiculously large numbers of pieces are employed, but can be slow to converge.

We will be attempting to approximate several functions in this lab, all on the interval [-1,1]. These
functions include:

• The Runge example function, f(x) = 1/(1 + x2), runge.m.

• The function

f(x) =

{
0 −1 ≤ x < 0
x(1− x) 0 ≤ x ≤ 1

(1)

For the purpose of this lab, this function will be called “partly quadratic.” It was chosen because it
is simple, continuous and satisfies f(−1) = f(1), but is not differentiable. A simple Matlab function
m-file to compute this “partly quadratic” function can be found by copying the following code:

1

function y=partly_quadratic(x)

% y=partly_quadratic(x)

% input x (possibly a vector or matrix)

% output y, where

% for x<=0, y=0

% for x>0, y=x(1-x)

y=(heaviside(x)-heaviside(x-1)).*x.*(1-x);

Remark: The “heaviside” function (sometimes called the “unit step function”) is named after Oliver
Heaviside and is defined as

f(x) =

 0 x < 0
0.5 x = 0
1 0 < x

(2)

The heaviside function is part of Matlab.

• A third function is a function whose graph is shaped like the teeth of a saw, similar to one used in Lab
6:

f(x) =

 (x+ 1) −1 ≤ x < 0
0 x = 0
(x− 1) 0 < x ≤ 1

(3)

A simple Matlab function m-file to compute this sawshape function can be found by downloading
sawshape9.m from the web site or by copying the following code:

function y=sawshape9(x)

% y=sawshape9(x)

% input x (possibly a vector or matrix)

% output y, where

% y=(x+1) for -1<=x<0

% y=0 for x=0

% y=(x-1) for 0<x<=1

y= heaviside(-x).*(x+1) + heaviside(x).*(x-1);

Remark: In Lab 6, you saw a similar function defined using the Matlab find command, while heaviside

is used here. There is no essential reason for this change.
This lab will take four sessions. If you print this lab, you may prefer to use the pdf version.

1.1 Matlab remarks

This kind of approximation requires evaluation of integrals. We will use the Matlab numerical integration
function integral. Since we will be computing fairly small errors, will replace the default error tolerances
with smaller ones. The Matlab command is

q=integral(func,-1,1,’AbsTol’,1.e-14,’RelTol’,1.e-12);

where func is a function handle to a function written using vector (array) syntax. This command will result
in an approximation, q, satisfying∣∣∣∣q − ∫ 1

−1

func(x)dx

∣∣∣∣ ≤ max{10−14, 10−12q}.

WARNING: The integral function was introduced into Matlab in 2012. If your version of Matlab is older
than that, you can use the quadgk function for this lab. The calling sequence for that function is

2

q=quadgk(func,-1,1,’AbsTol’,1.e-14,’RelTol’,1.e-12, ...

’MaxIntervalCount’,15000);

1.2 ntgr8, an abbreviation function

Since these integration functions involve extra parameters and extra typing, You should create an abbrevi-
ation for them for use in this lab. Create an m-file named ntgr8 in the following way:

function q=ntgr8(func)

% q=ntgr8(func) integrates func over [-1,1] with tight tolerances

q=integral(func,-1,1,’AbsTol’,1.e-14,’RelTol’,1.e-12);

with a similar function if you are using quadgk. This function will save you some typing for this lab. The
name looks strange in print, but it is easy to remember because it is a pun. The letter n can be pronounced
“en,” the letter t can be pronounced “tee” and gr8 can be pronounced “grate.” Put them together and it
sounds like “integrate.”

2 Least squares approximations in L2([−1, 1])

The problem of L2 approximation can be described in the following way.

Problem: Given a function f ∈ L2, and a (complete) set of functions ϕℓ(x) ∈ L2, n = 1, 2, . . . , then for a
given N , find the set of values {cℓ|ℓ = 1, 2, . . . , N} so that

f(x) ≈
N∑
ℓ=1

cℓϕℓ (4)

and the approximation is best in the sense of having the smallest L2 error.

Quarteroni, Sacco, and Saleri, in Section 10.7, discuss least-squares approximation in function spaces
such as L2([−1, 1]). The idea is to minimize the norm of the difference between the given function and the
approximation. Given a function f and a set of approximating functions (such as the monomials {xk−1 :
k = 1, 2, . . . , n}), for each vector of numbers c = (cℓ) define a functional

F (c) =

∫ 1

−1

(
f(x)−

n∑
ℓ=1

cℓx
n−ℓ

)2

dx.

This continuous functional becomes large when ∥c∥ is large and it is bounded below by 0, so it must have a
minimum, and because the function is differentiable as a function of c, the minimum must occur when

∂F

∂cℓ
= 0 for ℓ = 1, . . . , n.

This expression is evaluated here for the case of quadratic approximations (n = 3).
Consider the functional

F =

∫ 1

−1

(
f(x)− (c1x

2 + c2x+ c3)
)2

dx

3

where f is the function to be approximated on the interval [−1, 1]. Taking partial derivatives with respect
to ci yields the equations

∂F

∂c1
= −2

∫ 1

−1

(f(x)− (c1x
2 + c2x+ c3))x

2dx

∂F

∂c2
= −2

∫ 1

−1

(f(x)− (c1x
2 + c2x+ c3))xdx

∂F

∂c3
= −2

∫ 1

−1

(f(x)− (c1x
2 + c2x+ c3))dx

and setting each of these to zero yields the system of equations

c1
∫ 1

−1
x4dx + c2

∫ 1

−1
x3dx + c3

∫ 1

−1
x2dx =

∫ 1

−1
x2f(x)dx

c1
∫ 1

−1
x3dx + c2

∫ 1

−1
x2dx + c3

∫ 1

−1
xdx =

∫ 1

−1
xf(x)dx

c1
∫ 1

−1
x2dx + c2

∫ 1

−1
xdx + c3

∫ 1

−1
dx =

∫ 1

−1
f(x)dx

or
(2/5)c1 + 0 + (2/3)c3 =

∫ 1

−1
x2f(x)dx

0 + (2/3)c2 + 0 =
∫ 1

−1
xf(x)dx

(2/3)c1 + 0 + (2/1)c3 =
∫ 1

−1
f(x)dx

(5)

(Since the interval of integration is symmetric about the origin, the integral of an odd monomial is zero.)
Equation (??) is related to Equations (10.1) and (10.2) in Quarteroni, Sacco, and Saleri, but their

presentation focusses on orthogonal polynomials. For an arbitrary value of n, Equation (??) can be written
in the following way, where the indexing corresponds with Matlab indexing (starting with 1 instead of 0)
and with the Matlab convention for coefficients of polynomials (first coefficient is for the highest power of
x.)

n∑
ℓ=1

(∫ 1

−1

x(2n−k−ℓ)dx

)
cℓ =

∫ 1

−1

xn−kf(x)dx for k = 1, . . . , n. (6)

The matrix in (??),

Hk,ℓ =

∫ 1

−1

x(2n−k−ℓ)dx = (1− (−1)(n−ℓ)+(n−k)+1)/((n− ℓ) + (n− k) + 1)

is closely related to the Hilbert matrix. In fact, if the derivation above were done over the interval [0,1]
instead of [-1,1], the matrix that arose would be the Hilbert matrix. The Hilbert matrix is notorious for
having a very poor condition number and being difficult to invert without losing accuracy. The following
exercise illustrates this difficulty and its implication for approximation.

Examining Equation (??), there are two sets of integrals that need to be evaluated in order to compute
the coefficients ck. On the left side, the integrands involve the products x(n−k)x(n−ℓ). On the right side, the
integrands involve the products x(n−k)f(x). Please note that these expressions are made more complicated
by the fact that they are indexed “backwards.” This is done to be consistent with Matlab’s numbering
scheme for coefficients. Later in the lab when we switch to Legendre polynomials and are free to number
the coefficients as we wish, we will switch to a simpler numbering scheme.

Once the coefficients ck have been found, the Matlab polyval function can be used to evaluate the
resulting polynomials.

Exercise 1: In this exercise, you will be writing a function m-file to compute the coefficient vector
of the best L2([−1, 1]) approximation to a function f(x) using Equation (??) above. This m-file will
have the signature

4

function c=coef_mon(func,n)

% c=coef_mon(func,n)

% func is a function handle

% ... more comments ...

% your name and the date

and be called coef mon.m. It will solve the system (??) by constructing the matrix H and right side
b and solving the resulting system for ck. In coef mon.m, func refers to a function handle.

(a) Begin coef mon.m with the above code.

(b) bk =
∫ 1

−1
xn−kf(x)dx.

for k=1:n

% force b to be a column vector with second index

b(k,1)=ntgr8(@(x) func(x).*x.^(n-k));

end

Warning: You should already have created the abbreviation function ntgr8.m according to
instructions in Section ?? above on Matlab remarks contained in the introduction to this lab.

(c) Complete the following code to compute the matrix elements H(k,ell) using the formula Hk,ℓ =∫ 1

−1
x(2n−k−ℓ)dx. Your code will be similar to the above code for b(k).

for k=1:n

for ell=1:n

H(k,ell)=ntgr8(???)

end

end

Note 1: I try not to use the letter “l” as a variable because it looks so much like the number 1.
Instead, I use ell.
Note 2: Time could be saved in the above code by taking advantage of the fact that H is a
symmetric matrix.
Note 3: It is not necessary to write code to compute the quantities Hk,ℓ because you can easily

write out the values of the integrals
∫ 1

−1
x(2n−k−ℓ)dx. I prefer that you use the approach described

above, though, to help you understand it.

(d) Solve for the coefficients with

c=H\b;

Do not be surprised if Matlab warns you that H is poorly conditioned for larger values of n.

(e) Verify your code is correct by computing the best 3-term approximation by monomials for the
polynomial f(x) = 3x2 − 2x+ 1. The result should be the coefficient vector for the polynomial f
itself.

(f) Write a script m-file named test mon.m containing code similar to the following

func=@partly_quadratic;

c=coef_mon(func,n);

xval=linspace(-1,1,10000);

yval=polyval(c,xval);

yexact=func(xval);

plot(xval,yval,xval,yexact)

5

% relative Euclidean norm is approximating

% the relative integral least-squares (L2 norm)

% using an approximate trapezoid rule

relativeError=norm(yexact-yval)/norm(yexact)

and use it to evaluate the approximation for n=1 and n=5. Look at the plot and estimate by eye
if the area between the exact and approximate curves is divided equally between “above” and
“below.” Further, the error for n=5 should be smaller than for n=1 and the plot should look much
better, but still far from perfect.

(g) You do not need to send me copies of the plots, but fill in the following table using the Runge
example function. When you report errors, please use at least three significant digits. One easy
way to get good precision is to use format short e. You should find that the error gets smaller
for early values of n and then deteriorates. At what value of n does the smallest relative error
occur? (You may get warnings that the matrix H is almost singular.)

Runge

n relative error

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

20 _______________

30 _______________

40 _______________

(h) You should notice that the errors in the Runge case for n=1 and n=2 are the same, as are the
errors for n=3 and n=4, as well as n=5 and n=6. Explain why this should occur.

(i) Fill in the following table for the partly quadratic function.

partly_quadratic

n relative error

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

20 _______________

30 _______________

40 _______________

(j) Fill in the following table for the sawshape9 function.

sawshape9

n relative error

1 _______________

2 _______________

3 _______________

4 _______________

6

5 _______________

6 _______________

10 _______________

20 _______________

30 _______________

40 _______________

You should notice that much smaller errors are associated with the smooth Runge example function than
with the non-differentiable partly quadratic function and with the discontinuous sawshape9 function.

You should see that the errors do not seem to be decreasing much for the final values of n, and wonder
why the method becomes poor as n gets large. It may not be obvious, but the matrices (??) and (??) are
related to the Hilbert matrix and are extremely difficult to invert. The reason inversion is difficult is because
the monomials all start to look the same as n gets larger, that is, they become almost parallel in the L2 sense.
Even if the integration could be performed without error, you would observe roundoff errors in evaluating
the resulting high-order polynomial.

One way to make the approximation problem easier might be to pick a better set of functions than
monomials. The following section discusses a good alternative choice of polynomials. These polynomials
allow much larger values of n.

3 Legendre Polynomials

The Legendre polynomials form an L2([−1, 1])-orthogonal set of polynomials. You will see below why
orthogonal polynomials make particularly good choices for approximation. In this section, we are going to
write m-files to generate the Legendre polynomials and we are going to confirm that they form an orthogonal
set in L2([−1, 1]). Throughout this section, we will be representing polynomials as vectors of coefficients, in
the usual way in Matlab.

The Legendre polyonomials are a basis for the set of all polynomials, just as the usual monomial powers
of x are. They are appropriate for use on the interval [-1,1] because they are orthogonal when considered as
members of L2([−1, 1]). Polynomials that are orthogonal are discussed by Quarteroni, Sacco, and Saleri in
Chapter 10, with Legendre polynomials discussed in Section 10.1.2. The first few Legendre polynomials are:

P0 = 1

P1 = x

P2 = (3x2 − 1)/2 (7)

P3 = (5x3 − 3x)/2

P4 = (35x4 − 30x2 + 3)/8

The value at x of any Legendre polynomial Pi can be determined using the following recursion:

P0 = 1,

P1 = x, and,

Pk = ((2k − 1)xPk−1 − (k − 1)Pk−2)/k

The following recursive Matlab function computes the values of the kth Legendre polynomial.

function yval = recursive_legendre (k , xval)

% yval = recursive_legendre (k , xval)

% yval = values of the k-th Legendre polynomial

% at values xval

if k<0

7

error(’recursive_legendre: k must be nonnegative.’);

elseif k==0 % WARNING: no space between else and if!

yval = ones(size(xval));

elseif k==1 % WARNING: no space between else and if!

yval = xval;

else

yval = ((2*k-1)*xval.*recursive_legendre(k-1,xval) ...

- (k-1)*recursive_legendre(k-2,xval))/k;

end

Unfortunately, this recursive function is too slow to be used in this lab. The alternative to recursive
calculation of Legendre polynomials is one that uses loops. It is a general fact that any recursive algorithm
can be implemented using a loop. The code for the loop is typically more complicated than the recursive
formulation. In the following exercise, you will write an algorithm using loops for Legendre polynomials.

Exercise 2: Write a function m-file legen.m first to find the values of the nth Legendre polynomial
Pn using a loop. The strategy will be to first compute the values of P0 and P1 from their formulæ,
then compute the values of Pk for larger subscripts by building up from lower subscripts, stopping at
Pn. You should note is that if k is larger than 2, you only need to retain the values of Pk−1 and Pk−2

in order to compute the values of Pk.

(a) Use the signature

function yval = legen (n , xval)

% yval = legen (n , xval)

% more comments

% your name and the date

and add appropriate comments.

(b) Use if tests to define the cases n<0, n==0 and n==1, and use the formulæ for these cases to
compute the vector of values yval.

(c) When n is larger than 1, compute the vector of values of P0 and call it ykm1 (ykm1 for “y sub k
minus 1”), and compute the vector of values of P1 and call it yk.

(d) Write a loop for k=2:n in which you first put the value of ykm1 into ykm2 (“y sub k minus 2”)
and then the value of yk into ykm1. You do this because you are changing the value of k to be one
larger. Then compute Pk, calling it yk, using the values ykm1 and ykm2. This line will be similar
to the corresponding line in recursive legendre.

(e) When the loop is complete, k has the value n. Set yval=yk;

(f) Test and verify your legen function for P3 with the following code.

xval=linspace(0,1,10);

norm(legen(3,xval)-(5*xval.^3-3*xval)/2)

and showing that the difference is of roundoff size.

(g) Your legen function and recursive legendre should agree. Test this agreement for n=10 with
the following code.

xval=linspace(0,1,20);

norm(legen(10,xval) - recursive_legendre(10,xval))

The difference should be of roundoff size.

8

4 Orthogonality and Integration

The Legendre polynomials form a basis for the linear space of polynomials. One good characteristic of any
set of basis vectors is to be orthogonal. For functions, we use the standard L2 dot product, and say that two
functions f(x) and g(x) are orthogonal if their dot product

(f, g) =

∫ 1

−1

f(x)g(x)dx

is equal to zero. In Matlab, you could use integral or quadgk via the abbreviation ntgr8 to compute this
quantity in the following way:

q=ntgr8(@(x) ffunc(x).*gfunc(x));

where ffunc gives the function f and gfunc gives g.

5 Legendre polynomial approximation

Legendre polynomial approximation in L2([−1, 1]) follows the same recipe as monomial approximation:

1. Compute the matrix Hm,n =
∫ 1

−1
Pm−1(x)Pn−1(x)dx. This matrix is diagonal (as opposed to the

Hilbert matrix in the monomial case), with diagonal entries Hm,m = 2/(2m− 1), so integration is not
necessary!

2. Compute the right side values bm =
∫ 1

−1
f(x)Pm−1(x)dx.

3. Solve d = H−1b using the formula dm = 2m−1
2 bm.

4. The approximation can be evaluated as

f(x) ≈ flegen(x) =

n∑
k=1

dkPk−1(x). (8)

The coefficients dk are not the same as the monomial coefficients ck computed earlier, and Equation (??)
must be used rather than polyval to evaluate the resulting approximations.

Exercise 3:

(a) Write a function m-file named coef legen.m with signature

function d=coef_legen(func,n)

% d=coef_legen(func,n)

% comments

% your name and the date

to compute the coefficients of the approximation as dk = 2k−1
2

∫ 1

−1
f(x)Pk−1(x)dx. You should

use the ntgr8 abbreviation function in the same way as used in Exercise ?? Note: The factor
(2k − 1)/2 comes from the inverse of the diagonal matrix Hk,k = 2/(2k − 1).

(b) Verify that coef legen is correct by computing the best Legendre approximation to the Legendre
function P3, where n ≥ 4. (Recall that n is the number of terms, not the degree of the polynomial.)
The values you get for d are the coefficients in Equation (??), not the coefficients of the polynomial.

(c) Write a function m-file called eval legen.m to be used to evaluate Legendre polynomials. It
should evaluate Equation (??) and have the signature

9

function yval=eval_legen(d,xval)

% yval=eval_legen(d,xval)

% comments

% your name and the date

(d) Verify that eval legen is correct by choosing d as the coefficients of P3 (you computed d for this
case above) and comparing the results of eval legen and legen at the five values [0,1,2,3,4].

(e) Write an m-file called test legen.m, similar to the test mon.m file you wrote above. It should
use eval legen and produce the relative error of the approximation. It is instructive if you plot
the approximation as well, but you do not need to send me the plots.

(f) Place the Matlab command tic; at the beginning of the script and the Matlab command toc;

at the end. This pair of commands will measure the elapsed time taken and print it.

(g) Fill in the following table for the Runge example function.

Runge

n relative error

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

20 _______________

30 _______________

40 _______________

50 _______________

(h) Fill in the following table for the partly quadratic function.

partly_quadratic

n relative error elapsed time

5 _______________

10 _______________

20 _______________

40 _______________

80 _______________

160 _______________ _______________

320 _______________ _______________

640 _______________ _______________

(i) Fill in the following table for the sawshape9 function.

sawshape9

n relative error elapsed time

5 _______________

10 _______________

20 _______________

40 _______________

80 _______________

160 _______________ _______________

320 _______________ _______________

640 _______________ _______________

10

(j) Based on the above data, roughly estimate the value of p where elapsed time is proportional to
np. Is 1 ≤ p ≤ 2? 2 ≤ p ≤ 3? 3 ≤ p ≤ 4? 4 ≤ p ≤ 5? 5 ≤ p ≤ 6?

You should find the same values as for approximation by monomials for small n, and you can accurately
compute with larger values of n using Legendre polynomials than using monomials. However, using
large values of n can result in computing times that grow more rapidly than expected as n increases
because the integral function must compensate for roundoff error arising from rapid oscillations. In
fact, the time does grow more rapidly than O(np), where you just estimated p.

6 Fourier series

There is another set of functions that is orthogonormal in the L2[−1, 1] sense. This is the set of trigonometric
functions

1√
2
, cos(πx), sin(πx), cos(2πx), sin(2πx), cos(3πx), . . .

and they can be used for approximating functions. We have seen trigonometric polynomials before in the
context of interpolation using eikπx for k = −n,−n+1, . . . ,−1, 0, 1, . . . , n−1, n. Using complex exponentials
is equivalent to sin and cos but the trigonometric functions are orthogonormal on [−1, 1] while the complex
exponentials are not.

The sum of the first 2n+ 1 terms of the Fourier series for a function f is given as

f(x) ≈ z√
2
+

n∑
k=1

sk sin kπx+ ck cos kπx. (9)

As usual, the coefficients can be found by multiplying both sides by (1/
√
2), sin(ℓπx), or cos(ℓπx) and

integrating. Orthonormality leads to the expressions

z =

∫ 1

−1

f(x)√
2
dx

sk =

∫ 1

−1

f(x) sin(kπx)dx (10)

ck =

∫ 1

−1

f(x) cos(kπx)dx

(terms involving k ̸= ℓ are zero).

Exercise 4:

(a) Write a function m-file named coef fourier.m that is similar to coef legen and has signature

function [z,s,c]=coef_fourier(func,n)

% [z,s,c]=coef_fourier(func,n)

% more comments

% your name and the date

to compute the first 2n+ 1 coefficients of the Fourier series using Equation (??).

(b) Test your coefficient function by using f(x) = 1/
√
2, f(x) = sin(2πx) and f(x) = cos(3πx), with

n ≥ 3. Of course, you should get z = 1, and all others zero in the first case, s2 = 1 and all others
zero in the second case, and c3 = 1 with all others zero in the third case.
Warning: The integral function requires that its integrand be a function that returns a vector
when its argument (x) is a vector. Be sure that you use such a function in the f(x) = 1/

√
2 case!

You can check your function by computing
∫ 1

−1
(1/

√
2)2 dx and checking that it equals 1.

11

(c) Write a function m-file called eval fourier.m to evaluate Equation (??) and have the signature

function yval=eval_fourier(z,s,c,xval)

% yval=eval_fourier(z,s,c,xval)

% more comments

% your name and the date

(d) Test eval fourier.m using the same three functions you used above: f(x) = 1/
√
2, f(x) =

sin(2πx) and f(x) = cos(3πx). In each case, use eval fourier.m with the appropriate choices of
coefficients z, s and c, and compare the approximate values at a selection of values against the
true values. Describe the values you chose and the results you obtained.

(e) Write an m-file called test fourier.m, similar to the test mon.m and test legen.m file you
wrote above. It should use eval fourier and produce the relative error of the approximation. It
is instructive if you plot the approximation as well, but you do not need to send me the plots.

(f) Fill in the following table for the Runge example function.

Runge

n relative error elapsed time

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

50 _______________

100 _______________ ______________

200 _______________ ______________

400 _______________ ______________

800 _______________ ______________

(g) Fill in the following table for the partly quadratic function.

partly_quadratic

n relative error elapsed time

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

50 _______________

100 _______________ ______________

200 _______________ ______________

400 _______________ ______________

800 _______________ ______________

(h) When you used trigonometric polynomial interpolation in Lab 6, you looked at the error for a
sawshape function and saw the Gibb’s phenomenon, which kept the error from going to zero. You
have seen good performance of Fourier approximation on differentiable and continuous functions
above. A discontinuous function exhibits the Gibb’s phenomonon, but when convergence is mea-
sured using an integral norm it doesn’t prevent convergence (although it slows it down). Fill in
the following table for the sawshape9 function.

12

sawshape9

n relative error elapsed time

1 _______________

2 _______________

3 _______________

4 _______________

5 _______________

6 _______________

10 _______________

50 _______________

100 _______________ ______________

200 _______________ ______________

400 _______________ ______________

800 _______________ ______________

(i) Based on the above data, roughly estimate the value of p where elapsed time is proportional to
np. Is 1 ≤ p ≤ 2? 2 ≤ p ≤ 3? 3 ≤ p ≤ 4?

You should be convinced that these series do not converge very rapidly, with execution times becoming much
too large to acheive high accuracy. This increase in execution time is due to the adaptive quadrature used
by integral requiring progressively more points. It turns out that increasing n beyond about 2000 results
in failure of integral to achieve the desired accuracy. Thus, the sawshape9 and partly quadratic functions
cannot be integrated to the accuracy that the Runge example function can achieve.

7 Piecewise constant approximation

We have learned that approximation is best done using matrices that are easy to invert accurately, like
diagonal matrices. This is the reason for using sets of orthogonal basis functions. We would also like to
be able to perform the right side integrals easily as well. A large part of the reason that the orders of
approximations in the exercises above have been restricted is that the integrals are difficult to perform
accurately because they “wiggle” a lot, a major source of inaccuracy in the approximation. Using the
integral function hides the inaccuracy, but you pay for it because the integrations require substantial time
for higher values of n, as you may have noticed.

In this section, we will look at approximation by piecewise constant functions. Approximation by piece-
wise linears or higher are also useful, but all the important steps are covered with piecewise constants.
Furthermore, piecewise constants are easy to extend to higher dimensions.

Suppose that a number Npc is given and that the interval [−1, 1] is divided into Npc equal subintervals
and Npc + 1 points xk, k = 1, 2, . . . , Npc + 1. For k = 1, . . . , Npc, a function uk(x) can be defined as

uk(x) =

{
1 xk ≤ x < xk+1

0 x < xk or x > xk+1

These functions clearly satisfy ∫ 1

−1

uk(x)uℓ(x)dx =

{
2/Npc k = ℓ
0 k ̸= ℓ

(11)

This orthogonality immediately implies linear independence. In addition, any function in L2([−1, 1]) can be
approximated as a sum of them (this is a deep theorem). As it turns out, these theoretical facts are not
compromised by numerical difficulties and for reasonable values of n can be used for numerical approximation.

13

If a vector of coefficients a can be found to represent the piecewise constant approximation to a function
f(x), then the approximation can be evaluated as

f(x) ≈ fpc(x) =

Npc∑
j=1

ajuj(x) = ak (12)

where k is the index satisfying xk ≤ x < xk+1.
In the following exercise, we will follow the same basic recipe as before to compute the coefficients a and

the approximation to f(x).

Exercise 5: In this exercise you will be working with these piecewise constant (pc) functions. You
may assume that Npc is even so that xk < 0 for k ≤ Npc/2, that xk > 0 for k > Npc/2+ 1 and xk = 0
for k = Npc/2 + 1.

(a) Write a function m-file named coef pc.m with signature

function a=coef_pc(func,Npc)

% a=coef_pc(func,Npc)

% comments

% your name and the date

to compute the coefficients of the approximation as

ak =
Npc

2

∫ 1

−1

f(x)uk(x)dx

=
Npc

2

∫ xk+1

xk

f(x)dx

Use integral (or, if you are using an older version of Matlab, quadgk), not ntgr8 to compute
these integrals, because the interval of integration is not [-1,1]. To write this function, you will
need to use linspace to generate the points xk. Be careful not to confuse the number of points
with the number of intervals!

(b) Test your coef pc on the function that is equal to one for all values of x. In Matlab, this can be
done with y=ones(size(x)). Use Npc=10. Of course, all ak = 1.

(c) Test coef pc with Npc=10 on the function f(x) = x. You should get

ak =
Npc

2

∫ xk+1

xk

xdx

=
Npc

4
(x2

k+1 − x2
k)

=
2k

Npc
− 1− 1

Npc

(d) We have already used a function called bracket.m that determines the values of k for which
xk ≤ x < xk+1. You may use the one you downloaded earlier or download bracket.m again from
the web site. Use bracket to write a function m-file called eval pc.m to evaluate the piecewise
constant approximation to f using Equation (??) and has the signature

function yval=eval_pc(a,xval)

% yval=eval_pc(a,xval)

% comments

% your name and the date

14

As in coef pc, you will need to use linspace to generate the points xk, and bracket to find the
values of k corresponding to the values of xval.

(e) Generate the coefficients a using the function f(x) = x and Npc=10 that you used above. Test
eval pc using

xval=[-0.95,-0.65,-0.45,-0.25,-0.05,0.15,0.35,0.55,0.75,0.95]

Be sure your answers are correct before continuing.

(f) Write an m-file called test pc.m similar to test mon.m and test legen.m above. You should use
vector (componentwise) statements whenever possible or the calculations might take a long time.
test pc.m should:

i. Confirm that Npc is an even number (and call error if not),

ii. Evaluate the coefficients (a) of the approximation using coef pc.m,

iii. Use eval pc.m to evaluate the approximation and then compare the approximation against

the exact solution, Because we will be using large values of Npc,
choose at least 20000 test points.

iv. Use tic and toc to measure the time taken by computing the coefficients, computing the
approximate and exact solutions, and computing the error.

It will be valuable to plot the approximation because it will help you debug your work and it will
illustrate the process.

Look carefully and critically at the plot for the Runge function with Npc=8. You should be able
to justify to yourself visually that no other piecewise constant function would produce a better
approximation. Send me the plot for the Runge function with Npc=8.

(g) Fill in the following table for the Runge example function:

Runge example

Npc relative error elapsed time

4 _______________

8 _______________

16 _______________

64 _______________

256 _______________

1024 _______________ ______________

4096 _______________ ______________

16384 _______________ ______________

(h) Fill in the following table for the partly quadratic function:

partly quadratic

Npc relative error elapsed time

4 _______________

8 _______________

16 _______________

64 _______________

256 _______________

1024 _______________ ______________

4096 _______________ ______________

16384 _______________ ______________

(i) Fill in the following table for the sawshape9 function:

15

sawshape9

Npc relative error elapsed time

4 _______________

8 _______________

16 _______________

64 _______________

256 _______________

1024 _______________ ______________

4096 _______________ ______________

16384 _______________ ______________

(j) Based on the above data, roughly estimate the integer p where relative error is proportional to
(1/n)p.

(k) Based on the above data, roughly estimate the value of p where elapsed time is proportional to
np.

This approximation may take a while to compute, but it does not deteriorate as Npc gets large! In fact, you
should observe linear convergence. Further, the time required does not grow very quickly. For any of these
three functions, accuracy higher than 10−10 can be achieved.
Remark: As you might imagine, approximation using piecewise linear functions will converge more rapidly
than using piecewise constants. There are alternative approaches for using piecewise linears: piecewise linear
functions on each interval with jumps at interval endpoints, as the piecewise constant functions have; and,
piecewise linear functions that are continuous throughout whole interval. The first retains orthogonality and
the diagonal form of the coefficient matrix H. The second sacrifices the diagonal form for a banded form
that is almost as easy to solve, as you may see in the next exercise. Continuity, however, can be worth the
sacrifice, depending on the application. Even higher order piecewise polynomial approximation is possible,
if the application can benefit.
Remark: In Exercises 3, 4, and 5 you were asked to estimate the growth of the running time with n. You
found in Exercises 3 and 4 that the running time increased more rapdily than linearly (“superlinear”) as n
increases, but in Exercise 5 it increased linearly. The distinction between superlinear and linear is important
when choosing an algorithm to use. When running time increases too fast, algorithms can become too
time-consuming to be useful. Since it is clear that approximation algorithms must scale at least linearly in
n, Exercise 5 shows that piecewise constant approximation can be an attractive choice. In the extra credit
problem below, you will find a similar result for piecewise linear approximation.

8 Extra credit: Piecewise linear approximation (8 points)

Piecewise linear approximations improve the rate of convergence over piecewise constant approximations, at
the cost of increased work. In addition, piecewise linear approximations are commonly used in finite element
approximations to differential equations. In this extra credit exercise, you will see how the same approach
you saw above can be extended to piecewise linear approximations.

For this presentation, you again break the interval into equal subintervals. Denote the number of intervals
by Npl, although it is the same as Npc above. Thus, there are Npl+1 points defined over the interval [−1, 1]
according to the Matlab function x=linspace(-1,1,Npl+1). For each k = 1, 2, . . . , Npl + 1, define a set of
“hat” functions tk as

tk(x) =

 (xk+1 − x)/(xk+1 − xk) xk ≤ x ≤ xk+1 and k ≤ Npl

(x− xk−1)/(xk − xk−1) xk−1 ≤ x ≤ xk and k ≥ 2
0 otherwise

so that tk is a continuous piecewise linear function that is 1 at xk and zero at all the other points xℓ for
ℓ ̸= k. It is possible to show that these functions are linearly independent when considered as members of

16

the Hilbert space L2([−1, 1]). Further, an equation analogous to (??) is

∫ 1

−1

tk(x)tℓ(x)dx =

4/(3Npl) 2 ≤ k = ℓ ≤ Npl

2/(3Npl) k = ℓ = 1 or k = ℓ = Npl + 1

1/(3Npl) |k − ℓ| = 1 (i.e. k = ℓ± 1)

0 |k − ℓ| > 1

(13)

There are Npl + 1 functions tk(x)!
There is an equation analogous to (??), (??), (??), and (??):

f(x) ≈ fpl(x) =

Npl+1∑
j=1

ajtj(x) (14)

Exercise 6:

(a) To see why the functions are called “hat” functions, plot the function t3(x) when Npl = 4. If you
do this using Matlab, be sure that the points you use to plot t3 includes the points xk or your
plot will not look right. You might find that forcing space around the plot makes it look more
like a hat. You could use axis([-1.1, 1.1, -0.1, 1.1]) .

(b) Write a function coef plin to compute the coefficients aj in (??). The system of equations you
will need to generate and solve are analogous to (??) and can be constructed by replacing j with
ℓ in (??), multiplying by tk(x) and integrating. Do not forget to construct a matrix analogous to
Hkℓ. Devise a simple test meant for debugging and test coef plin.
Hint: The functions tk(x) have limited support, especially for large Npl. Adjust the limits of
integration to reflect the support in order to save time (and, it turns out) improve accuracy. You
will need to use the integral or quadgk commands directly instead of through ntgr8 since ntgr8
assumes an integration interval of [-1,1].

(c) Write a function eval plin. Devise a test (I suggest one using Npl = 2 or 3) and test eval plin.

(d) Write a function test plin, including timing, and apply it to the three functions we have been
using: runge partly quadratic and sawshape9. Use values of Npl=[4,8,16,64,256,1024]. In each
case, estimate the rate of convergence and rate of increased time as Npl varies.
Note: You should observe improved convergence rate for the two continuous functions and a
poorer rate for the discontinuous sawshape9.

Last change $Date: 2016/10/31 00:23:00 $

17

