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1 Introduction

We saw in the last lab that the interpolating polynomial could get worse (in the sense that values at interme-
diate points are far from the function) as its degree increased. This means that our strategy of using equally
spaced data for high degree polynomial interpolation is a bad idea. It turns out that equidistant spacing
must always result in poor asymptotic convergence rates! See the excellent article by Platte, Trefethen, and
Kuijlaars, Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples, SIAM
Review, 53#(2) pp. 308-318, www.siam.org/journals/sirev/53-2/77470.html. In this lab, we will test
other possible strategies for spacing the data and then we will look at an alternative way to do interpolation
with a guarantee that the error will get smaller when we take more points.

This lab will take three sessions. If you print this lab, you may prefer to use the pdf version.

2 Matlab Hints

• When you encounter an error while using an m-file look at the first error message you receive, not the
last. This message will identify the file from which it came, and the line number. Be careful: the file
that caused the error may not be the file you think you are using–it could be called from the one you
think you are using.

• The error message Not enough input arguments. often means that you forgot the @ sign in front of
a function name when you used it as an argument in an m-file.

3 Recursive functions

In this section, we discuss programming recursive functions. As you will see, recursive functions can be very
short and elegant when explicit formulas or loops are awkward and difficult to understand.
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Consider the factorial function. Its mathematical definition can be written as

0! = 1

n! = n
(
(n− 1)!

)
for n ≥ 1

A function defined this way is termed “recursive” because it is defined in terms of itself. You have seen such
definitions often in your theoretical work, but they can be confusing when you try to program them.

In this section, you will see how to write recursive functions in Matlab. It can be shown that any function
written in a recursive manner can be rewritten using loops; however, the recursive form of the function is
generally shorter and easier to understand.

Exercise 1: The following code implements the factorial function. We will call it rfactorial because
Matlab already has the factorial function and it is called factorial.

(a) Copy the following code to a file named rfactorial.m.

function f=rfactorial(n)

% f=rfactorial(n) computes n! recursively

% your name and the date

if n<0

error(’rfactorial: cannot compute factorial of negative integer.’);

elseif n==0 %double equals sign for logical testing

f=1;

else

f=n*rfactorial(n-1);

end

(b) Confirm that rfactorial gets the same result for 5! as Matlab’s factorial function.

(c) Suppose you are computing factorial(3). When rfactorial starts up, the first thing it does
is check if n<0. Since n=3, it goes on and discovers that before it can continue, it must start up
a new copy of rfactorial and compute factorial(2). In turn, this new copy checks that 2>1
and starts up another new copy of rfactorial so that there are now two copies of rfactorial
waiting and one copy active. In your own words, explain how the computation continues to get a
result of 6.

(d) If you attempt to use rfactorial for a negative integer, it will print an error message and stop
because of the error function. What would have happened if the code did not test if n<0?

The factorial function is really very simple, and recursion is, perhaps, too powerful a method to employ.
After all, it can be written as a simple loop or, even more simply, as prod(1:n). Consider the Fibonacci
series

f0 = 1

f1 = 1 (1)

fn = fn−1 + fn−2 for n > 1.

Values of fn can also be computed using Binet’s formula

fn =
(1 +

√
5)n+1 − (1−

√
5)n+1

2n+1
√
5

.

You can find more information about the Fibonacci series from the Wolfram (Mathematica) web site
http://mathworld.wolfram.com/FibonacciNumber.html.

2



Exercise 2:

(a) Write a Matlab function named fibonacci that accepts a value of n and returns the element fn
of the Fibonacci series according to the prescription given in (1).

(b) Confirm that your function correctly computes the first few Fibonacci numbers: 1,1,2,3,5,8,13.

(c) Confirm that Binet’s formula gives the approximately same value when n=13 as your fibonacci
gives.

The message you should be getting is that recursion is a powerful programming technique that allows you
to do some things more elegantly than using loops (e.g., fibonacci), and to do some things with essentially
the same effort as using loops (e.g., factorial). Although not presented in this lab, there are examples
where a recursive program is simply the wrong approach.

It is also true that some recursive programs (such as factorial) run just about as fast as their loop
counterparts while others (such as fibonacci) can be much slower than the same thing written as a loop.

4 An Experimental Framework

In the previous lab, we compared several different methods of polynomial interpolation, and we used a
common approach that standardized the comparisons. Part of this lab will be to generate polynomial
interpolants for a few different functions on different sets of points. We will be comparing the accuracy of
the interpolating polynomials, just as we did last lab. Instead of repeating basically the same code all the
time, it is more convenient to automate the process in an m-file. The utility function in the next exercise is
designed to test interpolation for different functions on different sets of points.
Remark: I often use Matlab to do comparisons of several different methods. I find it very helpful to build
a utility such as the one below to standardize the comparisons as well as to make them quick and easy. It
is both error-prone and bothersome to repeat the same sequence of commands several times.

Exercise 3:

In this exercise, you will construct a utility function m-file that will take as input a function (handle)
to interpolate and a set of points xdata on which to perform the interpolation. In the previous lab, the
points xdata were uniformly distributed but in this lab we will investigate non-uniform distributions.
The interpolation error will be computed by picking a much larger number of test points than are used
for interpolation and computing the maximum error on this larger set of test points. The function uses
eval lag.m and lagrangep.m from last lab. You can use your versions or download mine. An outline
of this function follows:

function max_error=test_poly_interpolate(func,xdata )

% max_error=test_poly_interpolate(func,xdata )

% utility function used for testing polynomial interpolation

% func is the function to be interpolated

% xdata are abscissae at which interpolation takes place

% max_error is the maximum difference between the function

% and its interpolant

% your name and the date

% Choose the number of the test points and generate them

% Use 4001 because it is odd, capturing the interval midpoint

NTEST=4001;

% construct NTEST points evenly spaced so that
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% they cover the interpolation interval in a standard way, i.e.,

% xval(1)=xdata(1) and xval(NTEST)=xdata(end)

xval= ???

% we need the results of func at the points xdata to do the

% interpolation WARNING: this is a vector statement

% In a real problem, ydata would be "given" somehow, and

% a function would not be available

ydata=func(xdata);

% use Lagrange interpolation from lab6 to do the interpolation

% WARNING: these use componentwise (vector) statements.

% Generate yval as interpolated values corresponding to xval

yval=eval_lag( ???

% we will be comparing yval with the exact results of func at xval

% In a real problem, the exact results would not be available.

yexact= ???

% plot the exact and interpolated results on the same plot

% this gives assurance that everything is reasonable

plot( ???

% compute the error in a standard way.

max_error=max(abs(yexact-yval))/max(abs(yexact));

Use cut-and-paste to copy this code from the web page.

(a) Look a the code in test_poly_interpolate.m and complete the statements that have question
marks in them.

(b) Test your test poly interpolate.m function by getting the same approximation values for the
Runge example function f(x) = 1/(1 + x2) on the interval [−π, π] with uniformly spaced points
as you should have seen in last lab and are reproduced here Recover your runge.m file from last
lab or rewrite it. Do not forget to use componentwise (vector) syntax.

Runge function, evenly spaced points

ndata = 5 Max Error = 0.31327

ndata = 11 Max Error = 0.58457

ndata = 21 Max Error = 3.8607

(c) Construct xdata containing ndata=5 evenly spaced points between -5 and +5 (not the same
interval) and use the utility test_poly_interpolate to plot and evaluate the error between
the interpolated polynomial and the exact values of the Runge example function, and fill in the
following table.

Runge function, evenly spaced points

ndata = 5 Max Error = ________

ndata = 11 Max Error = ________

ndata = 21 Max Error = ________

After looking at the plotted comparisons between the Runge example function and its polynomial fit, you
might guess that the poor fit is because the points are evenly spaced. Maybe they should be concentrated
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near the endpoints (so they don’t oscillate wildly there) or near the center (maybe the oscillations are caused
by too many points near the endpoints). Let’s examine these two hypotheses.

The strategy used in the next exercise is to use a function to change the distribution of points. That is,
pick a nonlinear function f that maps the interval [−1, 1] into itself (we will use x2 and x1/2) and also pick an
affine function g that maps the given interval, [−5, 5] into [−1, 1]. Then use the points xk = g−1(f(g(x̃k)) =
g−1 ◦ f ◦ g(x̃k), where x̃k are uniformly distributed.

Exercise 4: We have been looking at evenly-spaced points between -5 and 5. One way to concentrate
these points near zero would be to recall that, for numbers less than one, |x|2 < |x|. Hence, if
xdata represents a sequence of numbers uniformly distributed between -5 and 5, then the expression
5*( sign(xdata).*abs(xdata./5).^2 ) yields a similar sequence of numbers concentrated near 0.
(The sign and abs functions are used to get the signs correct for negative values.)

(a) Construct 11 points uniformly distributed between [−5, 5] in a vector called xdata. Use the
transformation

xdata=5*( sign(xdata).*abs(xdata./5).^2 )

Look at the concentrated distribution of points using the command

plot(xdata,zeros(size(xdata)),’*’)

to plot the redistributed points along the x-axis. Your points should be concentrated near the
center of the interval [−5, 5] but with endpoints +5 and -5. Be sure that the endpoints are correct.
You do not need to send me this plot.

(b) Use this transformation and the test_poly_interpolate utility from Exercise 3 to fill in the
following table for the Runge example function with ndata points concentrated near 0.

Runge function, points concentrated near 0

ndata = 5 Max Error = ________

ndata = 11 Max Error = ________

ndata = 21 Max Error = ________

You should observe that the error is rising dramatically faster than in the uniformly distributed
case.

Exercise 5: Points can be concentrated near the endpoints in a similar manner, by forcing them away
from zero using the |x|1/2 =

√
|x| function.

(a) Use a transformation similar to the one in the previous exercise but with |x|1/2 with 11 points.
Take care to get the signs of negative xdata correct.

(b) Plot your points using the following command.

plot(xdata,zeros(size(xdata)),’*’)

Please send me this plot.

(c) Use this transformation and the test_poly_interpolate utility from Exercise 3 to fill in the
following table for the Runge example function with ndata points concentrated near the endpoints.

Runge function, points concentrated near endpoints

ndata = 5 Max Error = ________

ndata = 11 Max Error = ________

ndata = 21 Max Error = ________

You should observe that the error is shrinking, in contrast with the uniformly distributed case.

You could ask why I chose x2 and x1/2 out of the many possibilities. Basically, it was an educated guess.
It turns out, though, that there is a systematic way to pick optimally-distributed (Chebyshev) points. It is
also true that the Chebyshev points are closely related to trigonometric interpolation (discussed last time).
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5 Chebyshev Points

If we have no idea what function is generating the data, but we are allowed to pick the locations of the data
points beforehand, the Chebyshev points are the smartest choice. (There is more on Chebyshev points and
interpolation in Quarteroni, Sacco, and Saleri in Sections 10.1-10.3.)

Quarteroni, Sacco, and Saleri (Theorem 8.2) show that the interpolation error between a function f and
its polynomial interpolant p at any point x is given by an expression of the form:

f(x)− p(x) =

[
(x− x1)(x− x2) . . . (x− xn)

n!

]
fn(ξ) (2)

where ξ is an unknown nearby point. This is something like an error term for a Taylor’s series.
We can’t do a thing about the expression fn(ξ), because f is an arbitrary (smooth enough) function,

but we can affect the magnitude of the bracketed expression. For instance, if we are only using a single
data point (n = 1) in the interval [10,20], then the very best choice for the data point would be x1 = 15,
because then the maximum absolute value of the expression[

(x− x1)

1!

]
would be 5. The worst value would be to choose x at one of the endpoints, in which case we’d double the
maximum value. This doesn’t guarantee better results, but it improves the chance.

The Chebyshev polynomial of degree n is given by

Tn(x) = cos(n cos−1 x). (3)

This formula doesn’t look like it generates a polynomial, but the trigonometric formulæ for sums of angles
and the relation that sin2 θ + cos2 θ = 1 can be used to show that it does generate a polynomial.

These polynomials satisfy an orthogonality relationship and a three-term recurrence relationship

Tn = 2xTn−1(x)− Tn−2(x), with T0(x) = 1 and T1(x) = x. (4)

The facts that make Chebyshev polynomials important for interpolation are

• The peaks and valleys of Tn are smallest of all polynomials of degree n over [-1,1] with Tn(1) = 1.
(Quarteroni, Sacco, and Saleri, Property 10.2.) See also
http://en.wikipedia.org/wiki/Chebyshev polynomials); and,

• On the interval [-1,1], each polynomial oscillates about zero with peaks and valleys all of equal magni-
tude. (Quarteroni, Sacco, and Saleri, Property 10.1.)

Thus, when {x1, x2, . . . , xn} in (2) are chosen to be the roots of Tn(x), then the bracketed expression in (2)
is proportional to Tn, and the bracketed expression is minimized over all polynomials.

Before going on to use the Chebyshev points, it is a good idea to confirm that the two expressions (3)
and (4) do, in fact, refer to the same polynomials. Mathematically speaking, the best way to approach
the problem is to use the symbolic toolbox, which can produce the identity that can become the central
portion of a proof. Instead, we will approach the problem numerically. This approach will yield a convincing
example, but no proof.

Exercise 6:

(a) Write a Matlab function with the signature and first few lines,
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function tval=cheby_trig(xval,degree)

% tval=cheby_trig(xval,degree)

% your name and the date

if nargin==1

degree=7;

end

to evaluate Tn(x) as defined using trigonometric functions in (3) above. If the argument degree
is omitted, it defaults to 7, a fact that will be used below.

(b) Write a recursive Matlab function with the signature and first few lines,

function tval=cheby_recurs(xval,degree)

% tval=cheby_recurs(xval,degree)

% your name and the date

if nargin==1

degree=7;

end

to evaluate Tn(x) as defined recursively in (4) above. If the argument degree is omitted, it
defaults to 7, a fact that will be used below.

(c) Show that cheby trig and cheby recurs agree for degree=4 (T4) at the points x=[0,1,2,3,4]
by computing the largest absolute value of the differences at those points. What is this value?
Remark: If two polynomials of degree 4 agree at 5 points, they agree everywhere. Hence if (3)
defines a polynomial, then (3) and (4) produce identical values for T4. This is why only five test
points are required.

(d) Plot values of cheby trig and cheby recurs on the interval [-1.1, 1.1] for degree=7 (T7). Use
at least 100 points for this plot in order to see the details. The two lines should lie on top of one
another. You should also observe visually that the peaks and valleys of T7 are of equal absolute
value. Please include this plot with your summary.
Suggestion: You can plot the first curve with a wider line than the second, as you did in the
previous lab, to see both lines.

(e) Visually choose change-of-sign intervals around the largest and second-largest roots in your plot
of T7. Using your bisect.m file from Lab 3 or my version of bisect.m, find the largest and
second-largest roots of T7(x) = 0 on the interval [-1.1, 1.1].

5.1 Constructing the Chebyshev points

The Chebyshev points are the zeros of the Chebyshev polynomials. They can be found from (3):

cos(n cos−1 x) = 0,

n cos−1 x = (2k − 1)π/2,

cos−1 x = (2k − 1)π/(2n),

x = cos

(
(2k − 1)π

2n

)
For a given number n of data points, then, the Chebyshev points on the interval [a, b] can be constructed

in the following way.
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1. Pick equally-spaced angles θk = (2k − 1)π/(2n), for k = 1, 2, . . . , n.

2. The Chebyshev points on the interval [a, b] are given as

xk = 0.5(a+ b+ (a− b) cos θk),

for k = 1, 2, . . . , n.

Exercise 7:

(a) Write a Matlab function m-file called cheby_points.m with the signature:

function xdata = cheby_points ( a, b, ndata )

% xdata = cheby_points ( a, b, ndata )

% more comments

% your name and the date

that returns in the vector xdata the values of the ndata Chebyshev points in the interval [a,b].
You can do this in 3 lines using vector notation:

k = (1:ndata); %vector, NOT A LOOP

theta = (vector expression involving k)

xdata = (vector expression involving theta)

or you can use a for loop. (The vector notation is more compact and runs faster, but is a little
harder to understand.)

(b) To check your work, use cheby points to find the Chebyshev points on the interval [-1,1] for
ndata=7. Do the largest and second largest roots agree with your roots of T7 computed above?

(c) What are the five Chebyshev points for ndata=5 and [a,b]=[-5,5]?

(d) You should observe that the Chebyshev points are not uniformly distributed on the interval but
they are symmetrical about its center. It is easy to see from (3) that this fact is true in general.

Exercise 8: Repeat Exercise 4 but with Chebyshev points on [-5,5]. Fill in the table. (Note the extra
row!) You should see smaller errors than before, especially for larger ndata.

Runge function, Chebyshev points

ndata = 5 Max Error = ________

ndata = 11 Max Error = ________

ndata = 21 Max Error = ________

ndata = 41 Max Error = ________

In the following exercise, you will numerically examine the hypothesis that the Chebyshev points are
the best possible set of interpolation points. You will do this by running many tests, each one using a
randomly-generated set of interpolation points. If the theory is correct, none of these tests should result in
an error smaller than the error obtained using the Chebyshev points.

Exercise 9:

(a) First, remove or comment out the plotting statements in test poly interpolate because we will
be running it many times.

(b) The Matlab rand function generates a matrix filled with randomly-generated numbers uniformly
distributed in the interval [0, 1]. What does the following statement do?

xdata=[-5,sort(10*(rand(1,19)-.5)),5];

8



(c) If you execute the previous command twice, will you get the same values for xdata?

(d) Use the following loop to test a number of different sets of 21 interpolation points. This loop
should take much less than a minute.

for k=1:500

xdata=[-5,sort(10*(rand(1,19)-.5)),5];

err(k)=test_poly_interpolate(@runge,xdata);

end

(e) What are the largest and smallest observed values of err? How do they compare with the error
you found in the previous exercise for 21 Chebyshev points?

Remark It is, in fact, possible for a randomly-generated set of points to yield a smaller error than the
Chebyshev points when computed using test poly interpolate. The Chebyshev points are not
necessarily optimal for the Runge example function–they are optimal over the set of all smooth
functions. It is also possible because test poly interpolate computes the error at only 4001
points.

Remark The larger the number of trials, the more rigorous this kind of testing becomes. It is never, of
course, a proof, but it can be a way of discovering a counterexample.

We now leave the subject of interpolation using a single polynomial and discuss interpolation using
different polynomials on different subintervals. This “piecewise” interpolation is a much better strategy
than using single polynomials for most applications.

6 Bracketing

In the next section, we are going to consider interpolation using piecewise linear functions, instead of poly-
nomial functions. That means that, in order to evaluate the interpolating function we first must know in
which of the intervals (pieces) x lies, and then compute the value of the function depending on the endpoints
of the interval. This section addresses the issue of how to find the left and right end points of the subinterval
on which x lies.

We will write a utility routine to perform this task. We want to get the utility routine right, because we
need to be able to rely on it. As usual, it’s one of those things that’s very easy to describe, and not quite so
easy to program.

Suppose we are given a set of N abscissæ, in increasing order

x1 < x2 < · · · < xN

with functional values yn for n = 1, 2, . . . , N that together define a piecewise linear function ℓ(x). In order
to evaluate ℓ(x) for a given x, you need to know the index, n, so that x ∈ [xn, xn+1]. This situation is
illustrated below, with N = 4, and x ∈ [x2, x3]. so n = 2.
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In Matlab notation, this amounts to the following discussion. Denote N by ndata and the xn by the
Matlab vector xdata. We will assume that the components of xdata are strictly increasing. Now suppose
that we are given a value xval and we are asked to find an integer named left index so that the subinterval
[ xdata(left index), xdata(left index+1) ] contains xval. The index left index is that of the left
end point of the subinterval, and the index (left index+1) is that of its right end point. (The term index
in a computer program generally means the same thing as subscript in a mathematical expression.)

The following clarifications are needed. We seek an integer value left index so that one of the following
cases holds.

Case 1 If xval is less than xdata(1), then regard xval as in the first interval and left index=1; or

Case 2 If xval is greater than or equal to xdata(ndata), then regard xval as in the final interval and
left index=ndata-1 (read that value carefully!); or,

Case 3 If xval satisfies xdata(k)<=xval and xval<xdata(k+1), then left index=k.

We would like to be able to write a Matlab function to perform this task even when xval is a vector of
values, but it is not easy to do it efficiently. Instead, in the following exercise, you will write a function
scalar bracket to do it for the case xval is a scalar, not a vector. In Exercise 11, you will see how it can
be written for vectors.

Exercise 10:

In this exercise, we will be writing a Matlab function m-file called scalar bracket.m and test it
thoroughly. Later, you will see how to write it for vectors.

(a) Write a function m-file called scalar_bracket.m that completes the following skeleton. The
“cases” mentioned in the skeleton refer to the list of three cases above.

function left_index=scalar_bracket(xdata,xval)

% left_index=scalar_bracket(xdata,xval)

% more comments

% your name and the date

ndata = ??? "number of x data points" ???
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% first check Case 1

if ??? "condition on xval" ???

left_index = ???

return

% then Case 2

elseif ??? "condition on xval" ???

left_index = ???

return

% finally Case 3

else

for k = 1:ndata-1

if ??? "condition on xval" ???

left_index = ???

return

end

end

error(’Scalar_bracket: this cannot happen!’)

end

(b) Now, make up a set of at least five values for xdata (don’t forget to make them ascending!), and a
set of at least seven test values xval, and test scalar_bracket with the values you have selected,
one at a time. Make the tests as comprehensive as you can. Your tests should include:

• One point to the left of all xdata.

• One point to the right of all xdata.

• One point equal to one of the xdata points in the interior.

• One point not equal to any xdata but in the interior.

Include your tests in your summary.

Note: The call to the Matlab error function may seem superfluous to you because, indeed, it can never be
executed. It is a powerful debugging tool, however. If you make an error in the cases, it might turn out that
the error message does get executed. In that case, you are alerted to the error immediately instead of having
an incorrect value of left index cause an obscure error hundreds of statements later. Anything that saves
debugging time is worthwhile.

Exercise 11: In this exercise, you will see how the same task can be accomplished using vector
statements. The code presented below is written to be as efficient as possible for the case of very large
vectors xval.

(a) Copy the following code to a file named bracket.m.

function left_indices=bracket(xdata,xval)

% left_indices=bracket(xdata,xval)

% more comments

% your name and the date

ndata=numel(xdata);

left_indices=zeros(size(xval));

% Case 1

left_indices( find( xval<xdata(2) ) )=1;

% Case 2
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left_indices( find( xdata(ndata-1)<=xval ) )=ndata-1;

% Case 3

for k=2:ndata-2

left_indices(find( (xdata(k)<=xval) & (xval<xdata(k+1)) ))=k;

end

if any(left_indices==0)

error(’bracket: not all indices set!’)

end

(b) Suppose that the letters a,b,c,...,z represent an ascending set of numbers. If xval=[b,m,f,g,h,a],
what would the value of indices be as a result of the following statement?

indices = find( (g <= xval) & (xval < p) )

(c) What would the value of left indices be after the following statements, assuming as above that
xval=[b,m,f,g,h,a],

left_indices=zeros(size(xval));

left_indices(find( (g<=xval) & (xval<p) ))=4

(d) Explain the meaning of the statement beginning “if any”. Explain why it indicates that “not
all indices set.”

(e) The loop in bracket has k=2:ndata-2, but the loop in scalar bracket has k=1:ndata-1. Why
do the two functions give the same results?

(f) Add a descriptive set of comments to the code.

(g) Use the same sets of values for xdata and xval as you used for scalar bracket.m in the previous
exercise. Summarize your results in a table such as this one.

xdata = ____ ____ ____ ____ ____

xval = ____ ____ ____ ____ ____ ____ ____

left_indices

from scalar = ____ ____ ____ ____ ____ ____ ____

left_indices

from vector = ____ ____ ____ ____ ____ ____ ____

Be sure that you get the same set of values for left indices.

7 Piecewise Linear Interpolation

Now we are ready to consider piecewise linear interpolation. The idea is that our interpolating function is
not going to be a smooth polynomial defined by a formula. Instead, it will be defined by piecing together
linear interpolants that go through each consecutive pair of data points. As such, it will be continouous but
not necessarily differentiable. To handle values below the first data point, we’ll just extend the first linear
interpolant all the way to the left. Similarly, we’ll extend the linear function in the last interval all the way
to the right.

The graph of a piecewise linear function may not be smooth, but one thing is certain: it will never
oscillate between the data values. And the interpolation error is probably going to involve the size of the
intervals, and the norm of the second derivative of the function, both of which are usually easy to estimate.
As the number of points gets bigger, the interval size will get smaller, and the norm of the second derivative
won’t change, so we have good reason to hope that we can assert a convergence result:

Given an interval [a, b] and a function f(x) with a continuous second derivative over that
interval, and any sequence λn(x) of linear interpolants to f with the property that hn, the size
of the maximum interval, goes to zero as n increases, then the linear interpolants converge to f
both pointwise, and uniformly.
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If C is a bound for the maximum absolute value of the second derivative of the function over the interval,
then the pointwise interpolation error and the L∞ norm are bounded by Ch2

n, while the L
1 norm is bounded

by (b− a)Ch2
n, and L2 norm is bounded by (

√
b− a)Ch2

n.
Uniform convergence is convergence in the L∞ norm, and is a much stronger result than pointwise

convergence.
Thus, if the only thing you know is that your function has a bounded second derivative on [a, b], then you

are guaranteed that the maximum interpolation error you make decreases to zero as you make your intervals
smaller.

Stop and think: The convergence result for piecewise linear interpolation is so easy to get. Is it really
better than polynomial interpolation? Why did we have such problems with polynomial interpolation before?
One reason is that the error result for polynomial interpolation couldn’t be turned into a convergence result.
Using 10 data points, we had an error estimate in terms of the 10-th derivative. Then using 20 points, we
had another error estimate in terms of the 20-th derivative. These two quantities can’t be compared easily,
and for nonpolynomial functions, successively higher derivatives can easily get successively and endlessly
bigger in norm. The linear interpolation error bound involved a particular fixed derivative and held that
fixed, so then it was easy to drive the error to zero. because the other factors in the error term depended
only on interval size.

To evaluate a piecewise linear interpolant function at a point xval, we need to:

1. Determine the interval (xdata(left index),xdata(left index+1)) containing xval;

2. Determine the equation of the line which passes through the points
(xdata(left index),ydata(left index)) and (xdata(left index+1),ydata(left index+1));

3. Evaluate that line at xval.

The bracket.m function from the previous exercise does the first of these tasks, but what of the second and
third?

Exercise 12: This exercise involves writing a Matlab function m-file called eval_plin.m (evaluate
piecewise linear interpolation) to do steps 2 and 3 above.

(a) Write down a general formula for the linear function through an arbitrary pair of points.

(b) Write a file called eval_plin.m starting with the signature

function yval = eval_plin ( xdata, ydata, xval )

% yval = eval_plin ( xdata, ydata, xval )

% more comments

% your name and the date

Add appropriate comments.

(c) Add lines that use bracket.m to find the vector of indices in xdata identifying the intervals that
each of the values in xval lies. (It is possible to do this in one line of code.)

(d) Add lines evaluating the formula you found in step 1 above on the interval you found in step 3.
(It is possible to do this in one line of code.)

(e) Test eval_plin.m on the piecewise linear function f(x) = 3|x| + 1 on the interval [−2, 2] using
the following sequence of commands.

xdata=linspace(-1,1,7);

ydata=3*abs(xdata)+1; % the function y=3*|x|+1

plot(xdata,ydata,’*’);

hold on
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xval=linspace(-2,2,4001);

plot(xval,eval_plin(xdata,ydata,xval));

hold off

(Note: this test procedure is very similar to the test_poly_interpolate function we wrote
earlier.) Your plot should pass through the five data points and consist of two straight lines
forming a “V”. Please send me a copy of your plot.

A piecewise linear function was chosen for testing in the last part of this exercise for both theoretical
and practical reasons. In the first place, you are fitting a piecewise linear function to a function that
is already piecewise linear and both the original and the fitted functions have breaks at x = 0, so the
two functions will agree. This makes it easy to see that the interpolation results are correct. In the
second place, it is unlikely you will get it right for this piecewise lineear data but have it wrong for
other data.

Exercise 13: In this exercise, we will examine convergence of piecewise linear interpolants to the
Runge example function we have considered before.

(a) Copy the file test_poly_interpolate.m to a file called test_plin_interpolate.m. Change the
signature to be

function max_error=test_plin_interpolate(func,xdata)

% max_error=test_plin_interpolate(func,xdata)

% more comments

% your name and the date

and change from using polynomial interpolation to piecewise linear interpolation using eval plin.
Do not forget to change to comments to reflect your coding changes.

(b) Restore the plot statement, if it is not active.

(c) Consider the same Runge example function we used above. Over the interval [-5,5], use ndata=5
equally spaced data points, use test_plin_interpolate to plot the interpolant and evaluate the
interpolation error. Please send me this plot.

(d) Repeat the evaluation for progressively finer meshes and fill in the following table. You do not
need to send me the plots that are generated. Warning: The final few of these tests should take
a few seconds, but if you have written code that happens to be inefficient they can take much
longer. You will not be graded on the efficiency of your code.

Runge function, Piecewise linear, uniformly-spaced points

ndata = 5 Max Error( 5) = ________

ndata = 11 Max Error( 11) = ________

ndata = 21 Max Error( 21) = ________

ndata = 41 Max Error( 41) = ________

ndata = 81 Max Error( 81) = ________

ndata =161 Max Error(161) = ________

ndata =321 Max Error(321) = ________

ndata =641 Max Error(641) = ________

(e) Repeat the above convergence study using Chebyshev points instead of uniformly distributed
points. You should observe no particular advantage to using Chebyshev points.

Runge function, Piecewise linear, Chebyshev points

ndata = 5 Max Error( 5) = ________

ndata = 11 Max Error( 11) = ________
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ndata = 21 Max Error( 21) = ________

ndata = 41 Max Error( 41) = ________

ndata = 81 Max Error( 81) = ________

ndata =161 Max Error(161) = ________

ndata =321 Max Error(321) = ________

ndata =641 Max Error(641) = ________

The errors in the table decrease as ndata increases, as they should. But decreasing error is only half the
story: we are interested in the rate that the errors decrease. You know from the lectures that, generally,
errors tend to be bounded by Chp where C is a constant, often related to a derivative of the function being
interpolated, h is approximately proportional to the subinterval size (in the uniform case, h = 1/ndata), and
p is an integer, often a small integer.

One way to estimate the rate errors decrease is to plot log(error) versus log h. From the general bound,
log(error) ≈ logC + p log h for small enough h, so log(error) versus log h should yield a curve that becomes
straight as h becomes small. Furthermore, plotting log(error) versus log h is the same thing as plotting error
versus h as a log-log plot.

It is possible to visually estimate the error from a log-log plot. To do so, simply plot lines with known
slope q until you see one that is roughly parallel to the error plot. You will try this in the following exercise.
You could also pick points on the plot and estimate the slope of the line directly, but it is easier to use visual
comparison.

Another way to estimate the rate of error decrease is to successively halve the subinterval lengths. You
may note that the ndata values chosen above result in subintervals halving in length. If the error is roughly
proportional to Chp, halving h should result in reducing the error by (1/2)p. Thus, |Max Error(321)|/|Max

Error(641)| should be roughly 2p for some integer p.

Exercise 14: This exercise investigates the behavior of the errors in the table (for uniformly-spaced
points) in the previous exercise.

(a) Plot the values of Max Error vs. h =(10/ndata) (h is approximately proportional to interval
size) in the first table in Exercise 13 (uniform points) using a log-log plot (the Matlab function
loglog is used just like plot, but results in a log-log plot). Your points should be roughly a
straight line on the plot, especially for larger values of ndata. Send me a copy of this plot.

(b) Visually estimate the slope of the line in the following manner.

i. Choose a value of C3 so that the line y = C3h
3 passes through the point h=10/641, y=Max

Error(641).

ii. With this value of C3, plot the line y = C3h
3 on the same log-log plot as the error plot above

(use hold on). If you have computed C3 correctly, the two plots should pass through the
same point at h=10/641.

iii. Do the same thing for y = C2h
2.

iv. Do the same thing for y = C1h.

v. Which of the values p best approximates the slope of the error curve, p=3, p=2, or p=1? Be
sure to send me this plot with your summary file.

(c) Compute the ratios Max Error(5)/Max Error(11),
Max Error(11)/Max Error( 21), Max Error(21)/Max Error( 41), etc. Do they appear to ap-
proach 2p for some integer p? If so, what is your estimate of the value of p?

Remark: When I compute ratios in order to estimate rates of convergence, I always choose the ratios
with the larger number in the numerator and the smaller number in the denominator. That way,
the ratios approach integers. I find it much easier to recognize numbers such as 15.5 as being nearly
24 = 16 than to recognize 0.06452 as being nearly 2−4 = 0.0625.
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8 Approximating the derivative (Extra credit 8 points)

It may seem likely that if you have a good approximation of a differentiable function then you could differ-
entiate it to get a good approximation of its derivative. On second thought, you have seen how the Runge
example results in wiggles when it is approximated by polynomials, so polynomials probably cannot be used
to approximate both a function and its derivative.

Standard theorems indicate that a twice-differentiable function can be approximated to O(h2) by piece-
wise linear functions (as you saw above in Exercises 13-14), and the derivative of the approximation approx-
imates the derivative of the function to O(h). In the following exercise, you will confirm this for the case of
the Runge example function.

Exercise 15:

(a) Modify your eval plin.m from Exercise 13 so that it returns both yval and y1val, where y1val
approximates the derivative of yval. (yval comes from a piecewise linear expression. y1val

should come from the derivative of that piecewise linear expression.)

(b) Write a Matlab function test plin1 interpolate.m similar to test plin interpolate.m, that
interpolates the given function (func), but plots and measures accuracy of the derivative of the
function.

(c) Test test plin1 interpolate.m on the function f(x) = 3|x|+ 1 on the interval [−2, 2]. (Recall
this is a test function used in Exercise 12.) Send me the plot. Explain why you believe your result
is correct.

(d) Using either the plot method (first two parts of Exercise 14) or the ratio method (third part of
Exercise 14), estimate the rate of convergence of the derivative of the interpolant to the derivative
of Runge’s example function on the interval [-5,5] as the number of points becomes large. You
should observe a slower rate of convergence for the derivative of Runge’s example function than
for Runge’s example function itself (in Exercise 13). Explain your methodology.
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