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1 Introduction

This lab will consume three sessions. It covers material from Sections 8.1, 8.2 and 10.1 of Quarteroni, Sacco,
and Saleri on interpolation on evenly-spaced points. If you print this lab, you may prefer to use the pdf
version.

This lab is concerned with interpolating data with polynomials and with trigonometric functions. There is
a difference between interpolating and approximating. Interpolating means that the function passes through
all the given points with no regard to the points between them. Approximating means that the function is
close to all the given points and and has some additional mathematical properties often making it close to
nearby points as well. It might seem that interpolating is always better than approximating, but there are
many situations in which approximation is the better choice.

Polynomials are commonly used to interpolate data. There are several methods for defining, constructing,
and evaluating the polynomial of a given degree that passes through data values. One common way is to
solve for the coefficients of the polynomial by setting up a linear system called Vandermonde’s equation.
A second way is to represent the polynomial as the sum of simple Lagrange polynomials. Other ways are
available and are discussed in the text and the lectures. In addition, we will discuss interpolation using
trigonometric polynomials.

We will examine these two ways of finding the interpolating polynomial and a way of finding the interpo-
lating trigonometric polynomial. We will see examples showing that interpolation does not necessarily mean
good approximation and that one way that a polynomial interpolant can fail to approximate is because of a
bad case of “the wiggles.” Trigonometric polynomial interpolation does better, but can also break down.

1.1 Notation

This lab is focussed on finding functions that pass through certain specified points. In customary notation,
you are given a set of points {(xk, yk)|k = 1, 2, . . . , n} and you want to find a function f(x) that passes
through each point (f(xk) = yk for k = 1, 2, . . . , n). That is, for each of the abscissæ, xk, the function value
f(xk) agrees with the ordinate yk. The given points are variously called the “given” points, the “specified”
points, the “data” points, etc. In this lab, we will use the term “data points.”

Written in the customary notation, it is easy to see that the quantities x and xk are essentially different.
In Matlab, without kerning and font differentiation, it can be difficult to keep the various quantities straight.
In this lab, we will use the name xval to denote the values of x and the names xdata and ydata to denote
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the data xk and yk. The variable names fval or yval are used for the value y = f(x) to emphasize that it
is an interpolated value.

Generally, one thinks of the values xval as not equal to any of the data values xdata although, in this
lab, we will often set xval to one or more of the xdata values in order to test that our interpolation is
correct.

2 Matlab Tips

At some point in this lab, you will need to determine if an integer m is not equal to an integer n. The Matlab
syntax for this is

if m ~= n

Sometimes it is convenient to enclose the logical expression in parentheses, but this is not required. Numbers
with decimal parts should never be tested for equality! Instead, the absolute value of the difference should
be tested to see if it is small. The reason is that numbers are rarely known to full 16-digit precision and, in
addition, small errors are usually made in representing them in binary instead of decimal form. To check if
a number x is equal to y, you should use

if abs(x-y) <= TOLERANCE

where TOLERANCE represents some reasonable value chosen based on the problem.
If you have a (square) linear system of equations, of the form

A * x = b

where A is an N by N matrix, and b and x are column vectors, then Matlab can solve the linear system either
by using the expression:

x = inv(A)*b

or, better, via the “backslash” command:

x = A \ b

that you used in the previous labs. The backslash command is strange looking. You might remember
it by noting that the matrix A appears underneath the backslash. The backslash is used because matrix
multiplication is not commutative, so a square matrix should appear to the left of a column vector. The
difference between the two commands is merely that the backslash command is about three times faster
because it solves the equation without constructing the inverse matrix. You will not notice a difference in
this lab, but you might see one later if you use Matlab for more complicated projects.

The backslash command is actually more general than just multiplication by the inverse. It can find
solutions when the matrix A is singular or when it is not a square matrix! We will discuss how it does these
things later in the course, but for now, be very careful when you use the backslash operator because it can
find “solutions” when you do not expect a solution.

Matlab represents a polynomial as the vector of its coefficients. Matlab has several commands for dealing
with polynomials:

c=poly(r) Finds the coefficients of the polynomial whose roots are given by the vector r.

r=roots(c) Finds the roots of the polynomial whose coefficients are given by the vector c.

c=polyfit( xdata, ydata, n) Finds the coefficients of the polynomial of degree n passing through, or
approaching as closely as possible, the points xdata(k),ydata(k), for k = 1, 2, . . . ,K, where K − 1
need not be the same as n.
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yval=polyval( c, xval) Evaluates a polynomial with coefficients given by the vector c at the values
xval(k) for k = 1, 2, . . . ,K for K ≥ 1.

When there are more data values than the minimum, the polyfit function returns the coefficients of a
polynomial that “best fits” the given values in the sense of least squares. This polynomial approximates,
but does not necessarily interpolate, the data. In this lab, you will be writing m-files with functions similar
to polyfit but that generate polynomials of the precise degree determined by the number of data points.
(N=numel(xdata)-1).

The coefficients ck of a polynomial in Matlab are, by convention, defined as

p(x) =
N∑

k=1

ckx
N−k (1)

and in Matlab are represented as a vector c. Beware: With this definition of the vector c of coefficients of
a polynomial:

1. N=numel(c) is one higher than the degree of p(x).

2. The subscripts run backwards! c(1) is the coefficient of the term with degree N-1, and the constant
term is c(N).

In this and some later labs, you will be writing m-files with functions analogous to polyfit and polyval,
using several different methods. Rather than following the matlab naming convention, functions with the
prefix coef will generate a vector of coefficients, as by polyfit, and functions with the prefix eval will
evaluate a polynomial (or other function) at values of xval, as with polyval.

In the this lab and often in later labs we will be using Matlab functions to construct a known polynomial
and using it to generate “data” values. Then we use our interpolation functions to recover the original,
known, polynomial. This strategy is a powerful tool for illustrative and debugging purposes, but practical
use of interpolation starts from arbitrary data, not contrived data.

3 The Polynomial through Given Data

In Lab 4 we discussed Newton’s method, which can be derived by determining a linear polynomial (degree 1)
that passes through the point (a, fa) with derivative f ′

a. That is p(a) = fa and p′(a) = dp/dx(a) = f ′
a. One

way of looking at this is that we are constructing an interpolating function, in this case a linear polynomial,
that explains all the data that we have. We may then want to examine the graph of the polynomial, evaluate
it at other points, determine its integral or derivative, or do other things with it. This is a reason that
polynomial interpolation is important even when the functions we are interested in are not polynomials.

4 Vandermonde’s Equation

Here’s one way to see how to organize the computation of the polynomial that passes through a set of data.
Suppose we wanted to determine the linear polynomial p(x) = c1x + c2 that passes through the data

points (x1, y1) and (x2, y2). We simply have to solve a set of linear equations for c1 and c2 constructed by
plugging in the two data points into the general linear polynomial. These equations are

c1x1 + c2 = y1

c1x2 + c2 = y2

or, equivalently, [
x1 1
x2 1

] [
c1
c2

]
=

[
y1
y2

]
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which (usually) has the solution

c1 = (y2 − y1)/(x2 − x1)

c2 = (x2y1 − x1y2)/(x2 − x1)

Compare that situation with the case where we want to determine the quadratic polynomial p(x) =
c1x

2 + c2x + c3 that passes through three sets of data values. Then we have to solve the following set of
three linear equations for the polynomial coefficients c: x2

1 x1 1

x2
2 x2 1

x2
3 x3 1


 c1

c2
c3

 =

 y1
y2
y3


These are examples of second and third order Vandermonde Equations. It is characterized by the fact

that for each row (sometimes column) of the coefficient matrix, the succesive entries are generated by a
decreasing (sometimes increasing) set of powers of a set of variables.

You should be able to see that, for any collection of abscissæ and ordinates, it is possible to define a
linear system that should be satisfied by the (unknown) polynomial coefficients. If we can solve the system,
and solve it accurately, then that is one way to determine the interpolating polynomial.

Now, let’s see how to construct and solve the Vandermonde equation using Matlab. This involves setting
up the coefficient matrix A. We use the Matlab variables xdata and ydata to represent the quantities xk and
yk, and we will assume them to be row vectors of length (numel) N.

for j = 1:N

for k = 1:N

A(j,k) = xdata(j)^(N-k) ;

end

end

Then we have to set the right hand side to the ordinates ydata, that is assumed to be a row vector. If we
can get all of that set up, then actually solving the linear system is easy. We just write:

c = A \ ydata’;

Recall that the backslash symbol means to solve the system with matrix A and right side ydata’. Notice
that ydata’ is the transpose of the row vector ydata in this equation. (By default, Matlab constructs row
vectors unless told to do otherwise.)

Exercise 1: The Matlab built-in function polyfit finds the coefficients of a polynomial through a set
of points. We will write our own using the Vandermonde matrix. (This is the way that the Matlab
function polyfit works.)

(a) Write a Matlab function m-file, coef vander.m with signature

function c = coef_vander ( xdata, ydata )

% c = coef_vander ( xdata, ydata )

% xdata= ???

% ydata= ???

% c= ???

% other comments

% your name and the date
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that accepts a pair of row vectors xdata and ydata of arbitrary but equal length, and returns
the coefficient vector c of the polynomial that passes through that data. Be sure to complete the
comments with question marks in them.
Warning: Think carefully about what to use for N.

(b) Test your function by computing the coefficients of the polynomial through the following data
points. (This polynomial is y = x2, so you can check your coefficient vector “by inspection.”)

xdata= [ 0 1 2 ]

ydata= [ 0 1 4 ]

(c) Test your function by computing the coefficients of the polynomial that passes through the fol-
lowing points

xdata= [ -3 -2 -1 0 1 2 3]

ydata= [1636 247 28 7 4 31 412]

(d) Confirm using polyval that your polynomial passes through these data points.

(e) Double-check your work by comparing with results from the Matlab polyfit function. Please
include both the full polyfit command you used and the coefficient vector it returned in your
summary.

In the following exercise you will construct a polynomial using coef vander to interpolate data points
and then you will see what happens between the interpolation points.

Exercise 2:

(a) Consider the polynomial whose roots are r=[-2 -1 1 2 3]. Use the Matlab poly function to
find its coefficients. Call these coefficients cTrue.

(b) This polynomial obviously passes through zero at each of these five “data” points. We want to
see if our coef vander function can reproduce it. To use our coef vander function, we need a
sixth point. You can “read off” the value of the polynomial at x=0 from its coefficients cTrue.
What is this value?

(c) Use the coef vander function to find the coefficients of the polynomial passing through the “data”
points

xdata=[ -2 -1 0 1 2 3];

ydata=[ 0 0 ?? 0 0 0];

Call these coefficients cVander.

(d) Use coef vander to find the coefficients using only the five roots as xdata. Name these coefficients
something other than cVander. Explain your results.

(e) Use the following code to compute and plot the values of the true and interpolant polynomials on
the interval [-3,2]. If you look at the last line of the code, you will see an estimate of the difference
between the two curves. How big is this difference? (We will be using essentially this same code
in several following exercises. You should be sure you understand what it does. You might want
to copy it to a script m-file.)

xval=linspace(-2,3,4001); % test abscissae for plotting

yvalTrue=polyval(cTrue,xval); % true ordinates

yvalVander=polyval(cVander,xval); % our ordinates

plot(xval,yvalTrue,’g’,’linewidth’,4); % true curve: thick green

hold on

plot(xval,yvalVander,’k’); % interpolant curve: thin black

hold off

max(abs((yvalTrue-yvalVander)))/max(abs(yvalTrue))
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Please include a copy of this plot with your summary. (You should observe the two curves are
the same. The second curve appears as a thin black curve overlaying the thick green curve.)
Note: The relative error is used here so that the case where yvalTrue are very large or very
small numbers does not cause difficulty.

5 Lagrange Polynomials

Suppose we fix the set of N distinct abscissæ xk, k = 1, . . . , N and think about the problem of constructing
a polynomial that has (not yet specified) values yi at these points. Now suppose I have a polynomial ℓ7(x)
whose value is zero at each xk, k ̸= 7, and is 1 at x7. Then the intermediate polynomial y7ℓ7(x) would have
the value y7 at x7, and be 0 at all the other xi. Doing the same for each abscissa and adding the intermediate
polynomials together results in the polynomial that interpolates the data without solving any equations!

In fact, the Lagrange polynomials ℓk are easily constructed for any set of abscissae. Each Lagrange

polynomial will be of degree N − 1. There will be N Lagrange polynomials, one per abscissa, and the kth

polynomial ℓk(x) will have a special relationship with the abscissa xk, namely, it will be 1 there, and 0 at
the other abscissæ.

In terms of Lagrange polynomials, then, the interpolating polynomial has the form:

p(x) = y1ℓ1(x) + y2ℓ2(x) + . . .+ yNℓN (x) (2)

=
N∑

k=1

ykℓk(x)

Assuming we can determine these magical polynomials, this is a second way to define the interpolating
polynomial to a set of data.
Remark: The strategy of finding a function that equals 1 at a distinguished point and zero at all other
points in a set is very powerful. If yk = 1 in (2), then p(x) ≡ 1, so the ℓk(x) are an example of a “partition
of unity.” One of the places you will meet it again is when you study the construction of finite elements for
solving partial differential equations.

In the next two exercises, you will be constructing polynomials through the same points as in the previous
exercise. Since there is only one nontrivial polynomial of degree (N-1) through N data points, the resulting
interpolating polynomials are the same in these and the previous exercise.

In the next exercise, you will construct the Lagrange polynomials associated with the data points, and
in the following exercise you will use these Lagrange polynomials to construct the interpolating polynomial.

Exercise 3: In this exercise you will construct Lagrange polynomials based on given data points.
Recall the data set for y = x2:

k : 1 2 3

xdata= [ 0 1 2 ]

ydata= [ 0 1 4 ]

(Actually, ydata is immaterial for construction of ℓk(x).) In general, the formula for ℓk(x) can be
written as:

ℓk(x) = (f1(x))(f2(x)) · · · (fk−1(x))(fk+1(x)) · · · (fN (x)) (3)

(skipping the kth factor), where each factor has the form

fj(x) =
(x− xj)

(xk − xj)
. (4)
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(a) Explain in a sentence or two why the formula (3) using the factors (4) yield a function

ℓk(xj) =

{
1 j = k
0 j ̸= k

(5)

(b) Write a Matlab function m-file called lagrangep.m that computes the Lagrange polynomials (3)
for any k. (One of the Matlab toolboxes has a function named “lagrange”, so this one is named
“lagrangep”.) The signature should be

function pval = lagrangep( k , xdata, xval )

% pval = lagrangep( k , xdata, xval )

% comments

% k= ???

% xdata= ???

% xval= ???

% pval= ???

% your name and the date

and the function should evaluate the k-th Lagrange polynomial for the abscissæ xdata at the
point xval. Hint, you can implement the general formula using code like the following.

pval = 1;

for j = 1 : ???

if j ~= k

pval = pval .* ??? % elementwise multiplication

end

end

Note: If xval is a vector of values, then pval will be the vector of corresponding values, so that
an elementwise multiplication (.*) is being performed.

(c) Using (5), determine the values of lagrangep( 1, xdata, xval) for xval=xdata(1), xval=xdata(2)
and xval=xdata(3).

(d) Does lagrangep give the correct values for lagrangep( 1, xdata, xdata)? For lagrangep(

2, xdata, xdata)? For lagrangep( 3, xdata, xdata)?

Exercise 4: The hard part is done. Now we want to use our lagrangep routine as a helper for a
second replacement for the polyfit-polyval pair, called eval lag, that implements Equation (2).
Unlike coef vander, the coefficient vector of the polynomial does not need to be generated separately
because it is so easy, and that is why eval lag both fits and evaluates the Lagrange interpolating
polynomial.

(a) Write a Matlab function m-file called eval lag.m with the signature

function yval = eval_lag ( xdata, ydata, xval )

% yval = eval_lag ( xdata, ydata, xval )

% comments

% your name and the date

This function should take the data values xdata and ydata, and compute the value of the inter-
polating polynomial at xval according to (2), using your lagrangep function for the Lagrange
polynomials. Be sure to include comments to that effect.

(b) Test eval lag on the simplest data set we have been using.
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k : 1 2 3

xdata= [ 0 1 2 ]

ydata= [ 0 1 4 ]

by evaluating it at xval=xdata. Of course, you should get ydata back.

(c) Test your function by interpolating the polynomial that passes through the following points, again
by evaluating it at xval=xdata.

xdata= [ -3 -2 -1 0 1 2 3]

ydata= [1636 247 28 7 4 31 412]

(d) Repeat Exercise 2 using Lagrange interpolation.

• Return to the polynomial constructed in Exercise 2 with roots r=[-2 -1 1 2 3]. and coef-
ficients cTrue.

• Reconstruct (using polyval) or recall the ydata values associated with xdata=[-2 -1 0 1

2 3].

• Compute the values of the Lagrange interpolating polynomial at the same 4001 test points
between -2 and 3. Call these values yvalLag.

• Plot yvalLag and yvalTrue and compute the error between them using the test plotting
approach used in Exercise 2. Include a copy of this plot with your summary.

6 Interpolating a function that is not a polynomial

Interpolating functions that are polynomials and using polynomials to do it is cheating a little bit. You have
seen that interpolating polynomials can result in interpolants that are essentially identical to the original
polynomial. Results can be much less satisfying when polynomials are used to interpolate functions that are
not themselves polynomials. At the interpolation points, the function and its interpolant agree exactly, so
we want to examine the behavior between the interpolation points. In the following exercise, you will see
that some non-polynomial functions can be interpolated quite well, and in the subsequent exercise you will
see one that cannot be interpolated well. The example used here is due in part to C. Runge, Über empirische
Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Z. Math. Phys., 46(1901), pp. 224-243.

Exercise 5: In this exercise you will construct interpolants for the hyperbolic sine function sinh(x)
and see that it and its polynomial interpolant are quite close.

(a) We would like to interpolate the function y = sinh(x) on the interval [−π, π], so use the following
outline to examine the behavior of the polynomial interpolant to the exponential function for five
evenly-spaced points. It would be best if you put these commands into a script m-file named
exer5.m.

% construct N=5 data points

N=5;

xdata=linspace(-pi,pi,N);

ydata=sinh(xdata);

% construct many test points

xval=linspace(???,???,4001);

% construct the true test point values, for reference

yvalTrue=sinh(???);

% use Lagrange polynomial interpolation to evaluate

% the interpolant at the test points
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yval=eval_lag(???,???,xval);

% plot reference values in thick green

plot(xval,yvalTrue,’g’,’linewidth’,4);

hold on

% plot interpolation data points

plot(xdata,ydata,’k+’);

% plot interpolant in thin black

plot(xval,yval,’k’);

hold off

% estimate the approximation error of the interpolant

approximationError=max(abs(yvalTrue-yval))/max(abs(yvalTrue))

Please send me this plot.

(b) By zooming, etc., confirm visually that the exponential and its interpolant agree at the interpo-
lation points.

(c) Using more data points gives higher degree interpolation polynomials. Fill in the following table
using Lagrange interpolation with increasing numbers of data points.

N = 5 Approximation Error = ________

N = 11 Approximation Error = ________

N = 21 Approximation Error = ________

You should have observed in Exercise 5 that the approximation error becomes quite small. The exponential
function is entire, as are polynomials, so they share one essential feature. In the following exercise, you will
see that attempts to interpolate functions that are not entire can give poor results.

Exercise 6:

(a) Construct a function m-file for the Runge example function y = 1
1+x2 . Name the file runge.m and

give it the signature

function y=runge(x)

% y=runge(x)

% comments

% your name and the date

Use componentwise (vector) division and exponentiation (./ and .^).

(b) Copy exer5.m to exer6.m and modify it to use the Runge example function. Please send me the
plot it generates.

(c) Confirm visually that the Runge example function and its interpolant agree at the interpolation
points, but not necessarily between them.

(d) Using more data points gives higher degree interpolation polynomials. Fill in the following table
using Lagrange interpolation with increasing numbers of data points.

N = 5 Approximation Error = ________

N = 11 Approximation Error = ________

N = 21 Approximation Error = ________

(e) Are you surprised to see that the errors do not decrease?
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Many people expect that an interpolating polynomial p(x) gives a good approximation to the function
f(x) everywhere, no matter what function we choose. If the approximation is not good, we expect it to get
better if we increase the number of data points. These expectations will be fulfilled only when the function
does not exhibit some “essentially non-polynomial” behavior. You will see why the Runge example function
cannot be approximated well by polynomials in the following exercise.

Exercise 7: The Runge example function has Taylor series

1

1 + x2
= 1− x2 + x4 − x6 + . . . (6)

as you can easily prove. This series has a radius of convergence of 1 in the complex plane. Polynomials,
on the other hand, are entire functions, i.e., their Taylor series converge everywhere in the complex
plane. No finite sum of polynomials can be anything but entire, but no entire function can interpolate
the Runge example function on a disk with radius larger than one about the origin in the complex
plane. If there were one, it would have to agree with the series (6) inside the unit disk, but the series
diverges at x = i and an entire function cannot have an infinite value (a pole).

(a) Make a copy of exer6.m called exer7.m that uses coef vander and polyval to evaluate the
interpolating polynomial rather than eval lag.

(b) Confirm that you get the same results as in Exercise 6 when you use Vandermonde interpolation
for the Runge example function.

N = 5 Approximation Error = ________

N = 11 Approximation Error = ________

N = 21 Approximation Error = ________

(c) Look at the nontrivial coefficients (ck) of the interpolating polynomials by filling in the following
table.

N=5 c( 5)= _____ c( 3)= _____ c( 1)= _____

N=11 c(11)= _____ c( 9)= _____ c( 7)= _____ c( 5)= _____

N=21 c(21)= _____ c(19)= _____ c(17)= _____ c(15)= _____

limiting +1 -1 +1 -1

(d) Look at the trivial coefficients (ck) of the interpolating polynomials by filling in the following
table. (Look carefully at what the colon notation does.)

N=5 max(abs(c(2:2:end)))= _____

N=11 max(abs(c(2:2:end)))= _____

N=21 max(abs(c(2:2:end)))= _____

You should see that the interpolating polynomials are “trying” to reproduce the Taylor series (6).
These polynomials cannot agree with the Taylor series at all points, though, because the Taylor series
does not converge at all points.

7 Trigonometric polynomial interpolation

Quarteroni, Sacco, and Saleri discuss interpolation by trigonometric polynomials in Section 10.1. Trigono-
metric interpolation is closely related to approximation by Fourier series, but we will focus on interpolation
in this lab.

The basic expression for trigonometric interpolation using (2N +1) functions over the interval [−π, π] is

f(x) =
2N+1∑
k=1

ake
i(k−N−1)x. (7)
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(We consider (2N + 1) points because we want to use real functions and real interpolants. Thus one
trigonometric function ei(k−N−1)x is the constant term when k = N + 1, and all the rest come in complex
conjugate pairs.)

Using the 2N + 1 evenly-spaced points in the interval (−π, π) given by

xj =
2π(j −N − 1)

2N + 1
, for j = 1, 2, . . . , (2N + 1), (8)

the coefficients can be determined from

ak =
1

2N + 1

2N+1∑
j=1

e−i(k−N−1)xjf(xj), for k = 1, 2, . . . , (2N + 1). (9)

These equations can be found directly by multiplying (7) through by each of the functions e−i(k−N−1)x in
turn, applying it to the values xk, and solving the resulting system for aj , taking advantage of the properties
of the complex exponential to simplify the equations.

Remark: The trigonometric coefficients ak in (9) play the same role as the polynomial coefficients ck in (1).
In the following exercises, we are going to write functions coef trig to be analogous to polyfit and

coef vander, and also eval trig to be analogous to polyval and eval lag.

Exercise 8:

(a) Construct a function m-file named coef trig.m with the signature

function a=coef_trig(func,N)

% a=coef_trig(func,N)

% func=???

% N=???

% a=???

% comments

% your name and the date

This function should evaluate the trigonometric coefficients ak according to Equation (9). Use
Equation (8) to determine the points xk. It is more efficient to use vector (componentwise)
notation and the Matlab sum function, but if you cannot see how to do that, just use for loops.

Hint: You can use the following code to generate the points xk without writing a for loop.

xdata = 2*pi*(-N:N)/(2*N+1);

Note: The length (numel) of a should be 2*N+1.

(b) Test your function by applying it to the function f(t) = eix, for N=10. (You can either write an
m-file for eix or use the @ command to define an “anonymous function.”) By examining Equation
(7), you should be able to see that ak = 1 for k = N + 2 and zero otherwise.

(c) Test your function again by applying it to f(x) = sin 4x with N=10. You should see that ak is
zero for all but two subscripts. What subscripts (k) have non-zero ak and what are the values?

Exercise 9:

(a) Construct a function m-file named eval trig.m with the signature

function fval=eval_trig(a,xval)

% fval=eval_trig(a,xval)

% a=???
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% xval=???

% fval=???

% comments

% your name and the date

This function should evaluate Equation (7) at an arbitrary collection of points, xval.

(b) Test your function by first using coef trig to find the coefficients for the function sin 4x with
n=10 (you did this in the previous exercise), and then applying eval trig to those coefficients at
4001 equally-spaced points in the interval [−π, π]. Compare the interpolated values versus sin 4x.
Plot them on the same plot: the lines should overlap. You can modify the m-file exer5.m that you
wrote for Exercise 5. Call your modified m-file exer9.m. (Warning: Your interpolated values
may appear to Matlab to be complex, and Matlab may not plot them the way you expect. In
that case, verify that their imaginary parts (Matlab function imag) are zero and plot only the real
(Matlab function real) parts. Please send me the plot.

Trigonometric polynomial interpolation does well even when the functions are not themselves trigono-
metric polynomials.

Exercise 10:

(a) Modify exer9.m to use the function y = x(π2−x2), and call the modified file exer10.m. Plot the
function and its interpolant for N=5, 10, 15 and N=20. You do not have to send me the plots, but
fill in the following table.

N = 5: y = x.*(pi^2-x.^2) Approximation Error = ________

N = 10: y = x.*(pi^2-x.^2) Approximation Error = ________

N = 15: y = x.*(pi^2-x.^2) Approximation Error = ________

N = 20: y = x.*(pi^2-x.^2) Approximation Error = ________

(b) Do the same thing for the Runge example function and fill in the following table.

N = 2 Runge Approximation Error = ________

N = 4 Runge Approximation Error = ________

N = 5 Runge Approximation Error = ________

You do not have to send me the plots.

(c) For the N=2 case, and the Runge example function, what are the five points at which the trigono-
metric interpolation should interpolate the Runge example function? Check that runge and
eval trig agree (up to roundoff) at those points.

(d) If you have not done so already, modify your script file to include plotting plus signs at each
interpolation point.

The previous exercise shows that trigonometric polynomial interpolation does well for some functions. It
does much less well when the function is not continuous or not periodic in [−π, π]. Consider, for example,
the function

f(x) =

{
x+ π for x < 0

x− π for x ≥ 0

Exercise 11:

(a) Copy the following code into a function m-file named sawshape6.m
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function y=sawshape6(x)

% y=sawshape6(x)

% x=???

% y=???

% comments

% your name and the date

kless=find(x<0);

kgreater=find(x>=0);

y(kless)=x(kless)+pi;

y(kgreater)=x(kgreater)-pi;

Be sure to add the usual comments.

(b) The Matlab find command is a very useful function. Use the help find command or the Help
facility to see what it does.

(c) If the letters a through j represent a sequence of ten increasing values, and if x=[a b c d e f g

h i j i h g], what is the result of the function calls find(x==c), find(x==h), and find(x>=g)?

(d) Use a script file based on exer9.m to fill in the following table by interpolating the sawshape6

function using trigonometric interpolation.

N = 5 Approximation Error = ________

N = 10 Approximation Error = ________

N = 100 Approximation Error = ________

You can see that the approximation error is not shrinking to zero, but if you look at the plots you
will see that the error really is shrinking everywhere except near x = 0, where the oscillations get
more rapid but do not get smaller. This behavior is typical and is called Gibbs’s phenomenon.
Please send me the plots for N=5 and N=100.

(e) Examine the plot for the N=5 case. Are the plus signs in the proper places to indicate the
interpolation points?

Increasing the order of polynomial interpolation can lead to divergence of approximation because of “the
wiggles.” Trigonometric interpolation does not diverge as n → ∞, but Gibbs phenomenon slows convergence
drastically at discontinuities.

8 Extra credit: Interpolation over triangles (8 points)

In this extra credit exercise, you will see how to find a quadratic interpolating polynomial for a function
given on an arbitrary triangle in the plane. The method used will be a two-stage one

1. Transform the given triangle into a “reference” triangle; and,

2. Use the two-dimensional Lagrange interpolating polynomials over the reference triangle to interpolate
the function.

The reason for this two-stage approach is that is is more convenient to generate the Lagrange polynomials
once over a standard triangle than to generate Lagrange polynomials for an arbitrary triangle. A second
reason is that each of the stages is easily programmed and can be used repeatedly. Computer programs
using finite element methods may involve thousands or millions of triangles.

Consider the following reference triangle, Tref = {(ξ, η) | 0 ≤ ξ ≤ 1, 0 ≤ η ≤ (1− ξ)}.
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Tref

In this triangle, the three nodes n4, n5, and n6 are midway along the indicated sides.
There are three linear Lagrange polynomials defined on Tref. It should be clear that any linear polynomial

can be written as a linear combination of ℓ1 . . . ℓ3.

ℓ1(ξ, η) = 1− ξ − η

ℓ2(ξ, η) = ξ

ℓ3(ξ, η) = η

There are six quadratic Lagrange polynomials defined on Tref. It should be clear that any quadratic
polynomial can be written as a linear combination of q1 . . . q6.

q1(ξ, η) = 2(1− ξ − η)(.5− ξ − η)

q2(ξ, η) = 2ξ(ξ − .5)

q3(ξ, η) = 2η(η − .5)

q4(ξ, η) = 4ξ(1− ξ − η)

q5(ξ, η) = 4ξη

q6(ξ, η) = 4η(1− ξ − η)

In the following exercise, you will be using these polynomials to interpolate functions on the following
triangle.
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The relationship between the reference triangle Tref expressed in (ξ, η) coordinates and the triangle T
expressed in (x, y) coordinates, as well as the function p(x, y) = e0.1xy, can be summarized in the following
table.

(x, y) (ξ, η) p

(2, 2) (0, 0) e0.4

(4, 2) (1, 0) e0.8

(3, 4) (0, 1) e1.2

(3, 2) (0.5, 0) e0.6

(3.5, 3) (0.5, 0.5) e1.05

(2.5, 3) (0, 0.5) e0.75

Exercise 12: Note: It is possible to do this exercise without writing any Matlab code. Please include
a description of the work you do outside of Matlab in your summary (or in a separate file, or give me
a handwritten explanation) and send me any Matlab m-files you use. If you wish to use the symbolic
toolbox for this lab, it would be a good learning exercise.

(a) Confirm that ℓi are Lagrange polynomials by directly computing the values ℓi(ξ, η), i = 1, . . . , 3,
for the nodal points nj j = 1, . . . , 3. Each ℓi should be 1 at ni and 0 at nj for j ̸= i.

(b) Confirm that qi are Lagrange polynomials by directly computing the values qi(ξ, η), i = 1, . . . , 6,
for the nodal points nj j = 1, . . . , 6. Each qi should be 1 at ni and 0 at nj for j ̸= i.

(c) Find a linear function x = x(ξ, η) so that x(n1) = 2, x(n2) = 4 and x(n3) = 3. Note that 2, 4,
and 3 are the x-coordinates of the three vertices of T . You can use the Lagrange polynomials ℓi.
Write this as a formula for x in terms of ξ and η.

(d) Similarly, find a linear function y = y(ξ, η) so that y(n1) = 2, y(n2) = 2 and y(n3) = 4. Note that
2, 2, and 4 are the y-coordinates of the three vertices of T . You can use the Lagrange polynomials
ℓi. Write this as a formula for y in terms of ξ and η.

(e) You have just constructed a mapping from (ξ, η) ∈ Tref to (x, y) ∈ T . This mapping can be
written in vector form as (

x
y

)
=

(
x0

y0

)
+ J

(
ξ
η

)
where J is a 2 × 2 matrix. What are the vector components x0, y0, and the components of the
matrix J?
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(f) The inverse of this mapping can be written as(
ξ
η

)
= J−1

(
x− x0

y − y0

)
This mapping can also be denoted as ξ = ξ(x, y) and η = η(x, y).

(g) The quadratic polynomial interpolant p(x, y) of the function e0.1xy over the triangle T can be
written as

p(x, y) =
6∑

k=1

akqk(ξ(x, y), η(x, y)) (10)

(also see the table at the beginning of this exercise). What are the values ak for k = 1, . . . , 6?
Hint: The top of the triangle is the point x = 3 and y = 4. What are the right and left sides of
(10) at that point?

(h) What is the value of p(3.5, 2.5)?
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