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1 Introduction

The bisection method is very reliable, but it can be relatively slow, and it does not generalize easily to more
than one dimension. The secant and Muller’s methods are faster, but still do not generalize easily to multiple
dimensions. In this lab we will look at Newton’s method for finding roots of functions. Newton’s method
naturally generalizes to multiple dimensions and can be much faster than bisection. On the negative side,
it requires a formula for the derivative as well as the function, and it can easily fail. Nonetheless, it is a
workhorse method in numerical analysis.

We will be taking three sessions to complete this lab. If you print this lab, you may find the pdf version
more appropriate.

2 Stopping Tests

Root finding routines check after each step to see whether the current result is good enough. The tests that
are made are called “termination conditions” or “stopping tests”. Common tests include:

Residual size |f(x)| < ϵ

Increment size |xnew − xold| < ϵ

Number of iterations: itCount > ITMAX

The size of the residual looks like a good choice because the residual is zero at the solution; however, it turns
out to be a poor choice because the residual can be small even if the iterate is far from the true solution.
You saw this when you found the root of the function f5(x) = (x − 1)5 in the previous lab. The size of
the increment is a reasonable choice because Newton’s method (usually) converges quadratically, and when
it does the increment is an excellent approximation of the true error. The third stopping criterion, when
the number of iterations exceeds a maximum, is a safety measure to assure that the iteration will always
terminate in finite time.

It should be emphasized that the stopping criteria are estimated errors. In this lab, in class, and in
later labs, you will see many other expressions for estimating errors. You should not confuse the estimated
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error with the true error, |xapprox − xexact|. The true error is not included among the stopping tests
because you would need to know the exact solution to use it.

3 Failure

You know that the bisection method is very reliable and rarely fails but always takes a (sometimes large)
fixed number of steps. Newton’s method works more rapidly a good deal of the time, but does fail. And
Newton’s method works in more than one dimension. One objective of this lab will be to see how Newton
can fail and get a flavor of what might be done about it.

Although we will seem to spend a lot of time looking at failures, you should still expect that Newton’s
method will converge most of the time. It is just that when it converges there is nothing special to say, but
when it fails to converge there is always the interesting questions of, “Why?” and “How can I remedy it?”

4 Introduction to Newton’s Method

You will find the definition of Newton’s method in Quarteroni, Sacco, and Saleri on pp. 255f, with convergence
discussed on pp. 263f and systems of equations on pp. 286ff, and in the lectures, along with convergence
theorems and the like. The idea of Newton’s method is that, starting from a guessed point x0, find the
equation of the straight line that passes through the point (x0, f(x0)) and has slope f ′(x0). The next iterate,
x1, is simply the root of this linear equation, i.e., the location that the straight line intersects the x-axis.

A “quick and dirty” derivation of the formula can be taken from the definition of the derivative of a
function. Assuming you are at the point x(k), (I am using superscripts in parentheses to denote iteration to
reduce confusion between iteration number and vector components.)

f(x(k) +∆x)− f(x(k))

∆x
≈ f ′(x(k)).

If f were linear, this approximate equality would be true equality and the next iterate, x(k+1) would be the
exact solution, satisfying f(x(k+1)) = 0. In other words

f(x(k+1)) = f(x(k) +∆x) = 0.

This yields
−f(x(k))

∆x
≈ f ′(x(k)),

or

∆x = x(k+1) − x(k) = − f(x(k))

f ′(x(k))
. (1)

As you know, Newton’s method also will work for vectors, so long as the derivative is properly handled.
Assume that x and f are n-vectors. Then the Jacobian matrix is the matrix J whose elements are

Jij =
∂fi
∂xj

.

(Here, i = 1 for the first row of J , i = 2 for the second row of J , etc., so that the Matlab matrix subscripts
correspond to the usual ones.) Thus, Newton’s method for vector functions can be written

x(k+1) − x(k) = −J(x(k))−1f(x(k)). (2)

Note: The Matlab backslash operator will be used instead of the inverse operator because it is about three
times faster.
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5 Writing Matlab code for functions

Newton’s method requires both the function value and its derivative, unlike the bisection method that requires
only the function value. You have seen how Matlab functions can return several results (the root and the
number of iterations, for example). In this lab, we will use this same method to return both the function
value and its derivative. For example, the f1.m file from the previous lab can be modified in the following
way to return both the value (y) and its derivative (yprime).

function [y,yprime]=f1(x)

% [y,yprime]=f1(x) computes y=x^2-9 and its derivative,

% yprime=2*x

% your name and the date

y=x.^2-9;

yprime=2*x;

Remark: Conveniently, this modified version could still be used for the bisection method as well because
Matlab returns only the first value (y) unless the second is explicitly used.
Remark: Although the syntax [value,derivative] appears similar to a vector with two components, it
is not that at all! You will see in the next lab cases where value is a vector and derivative is a matrix.

In the following exercise, you will modify each of the four functions from the previous lab to return both
values of both the function and its derivative.

Exercise 1:

(a) Modify each of the four function m-files f0.m, f1.m, f2.m, f3.m and f4.m from Lab 3 to return
both the function value and that of its derivative. Find the formulæ by hand and add them to
the mfles as is done above for f1.m. The functions are:

f0: y=x-1 yprime=???

f1: y=x^2-9 yprime=???

f2: y=x^5-x-1 yprime=???

f3: y=x*exp(-x) yprime=???

f4: y=2*cos(3*x)-exp(x) yprime=???

(b) Use the help f0 command to confirm that your comments include at least the formula for f0,
and similarly for f1, f2, f3 and f4.

(c) What are the values of the function and derivative at x=-1 for each of the five functions?

Remark: There are several other programming strategies for computing derivatives.

• You could compute the derivative value in a new m-file with a new name such as df0, df1, etc.

• You could compute the derivative using some sort of divided difference formula. This method is useful
for very complicated functions.

• You could use Matlab’s symbolic capabilities to symbolically differentiate the functions. This method
seems attractive, but it would greatly increase the time spent in function evaluation.

• There are automated ways to discover the formula for a derivative from the m-file or symbolic formula
defining the function, and these can be used to generate the m-file for the derivative automatically.
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6 Newton’s method: Matlab code

In the next exercise, you will get down to the task of writing Newton’s method as a function m-file. In this
m-file, you will see how to use a variable number of arguments in a function to simplify later calls. The size
of the error and the maximum number of iterations will be optional arguments. When these arguments are
omitted, they take on their default values.

The m-file you are about to write is shorter than bisect.m and the instructions take you through it step
by step.

Exercise 2:

(a) Open a new, empty m-file named newton.m. You can use either the menus or the command edit

newton.m.

(b) Start off the function with its signature line and follow that with comments. The comments
should repeat the signature as a comment, contain a line or two explaining what the function
does, explain what each of the parameters mean, and include your name and the date.

function [x,numIts]=newton(func,x,maxIts)

% [x,numIts]=newton(func,x,maxIts)

% func is a function handle with signature [y,yprime]=func(x)

% on input, x is the initial guess

% on output, x is the final solution

% EPSILON is ???

% maxIts is ???

% maxIts is an optional argument

% the default value of maxIts is 100

% numIts is ???

% Newton’s method is used to find x so that func(x)=0

% your name and the date

(You may have to complete this exercise before coming back to explain all of the parameters.)

(c) From a programming standpoint, the iteration should be limited to a fixed (large) number of
steps. The reason for this is that a loop that never terminates appears to you as if Matlab
remains “busy” forever.

In the following code, the special Matlab variable nargin gives a count of the number of input
arguments that were used in the function call. This allows the argument maxIts to be omitted
when its default value is satisfactory.

if nargin < 3

maxIts=100; % default value if maxIts is omitted

end

(d) Define the convergence criterion

EPSILON = 5.0e-5;

(e) Some people like to use while loops so that the stopping criterion appears at the beginning of
the loop. My opinion is that if you are going to count the iterations you may as well use a for

statement. Start off the loop with

for numIts=1:maxIts

(f) Evaluate the function and its derivative at the current point x, much as was done in bisect.m.
Remember that it is customary to indent the statements within a loop. You may choose the
variable names as you please. Recall that the syntax for using two values from a single function
call is
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[value,derivative]=func(x);

(g) Define a Matlab variable increment as the negative ratio of the function value divided by the
value of its derivative. This is the right side of Equation (1).

(h) Complete Equation (1) with the statement

x = x + increment;

(i) Finish the loop and the m-file with the following statements

errorEstimate = abs(increment);

disp(strcat(num2str(numIts), ’ x=’, num2str(x), ’ error estimate=’, ...

num2str(errorEstimate)));

if errorEstimate<EPSILON

return;

end

end

% if get here, the Newton iteration has failed!

error(’newton: maximum number of iterations exceeded.’)

The return statement causes the function to return to its caller before all maxIts iterations are
complete. If the error estimate is not satisfied within maxIts iterations, then the Matlab error

function will cause the calculation to terminate with a red error message. It is a good idea to
include the name of the function as part of the error message so you can find where the error
occurred.

The disp statement prints out some useful numbers during the iteration. For the first few exercises
in this lab, leave this printing in the file, but when the function is being used as part of a
calculation, it should not print extraneous information.

(j) Complete the comments at the beginning of the function by replacing the “???” symbols, and
use the help newton command to confirm your comments are correct.

(k) Recall the Newton iteration should take only a single iteration when the function is linear. Test
your newton function on the linear function f0 that you wrote in the previous exercise. Start
from an initial guess of x=10. The default value of maxIts (100) is satsifactory, so you can omit
it and use the command

[approxRoot numIts]=newton(@f0,10)

The correct solution, of course, is x=1 and it should take a single iteration. It actually takes a
second iteration in order to recognize that it has converged, so numIts should be 2. If either the
solution or the number of iterations is wrong, you have a bug: fix your code. Hint: The mistake
might be in the derivative in f0.m or in the m-file newton.m.

(l) Test your newton function on the quadratic function f1 that you wrote in the previous exercise.
Start from an initial guess of x=0.1. The default value of maxIts (100) is satsifactory, so you can
omit it. The correct solution, of course, is x=3. How many iterations are needed?

(m) As you know, the theoretical convergence rate for Newton is quadratic. This means that if you
compute the quantity

r
(k)
2 =

|∆x(k)|
|∆x(k−1)|2

(the superscripts indicate iteration number) then r
(k)
2 should approach a nonzero constant as

k → ∞. You have only taken a few iterations, but if you look at the sequence of values of
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errorEstimate values does it appear the the ratio r
(k)
2 is approaching a nonzero limit for this

case of Newton applied to f1? (If not, you have a bug: fix your code. The mistake could be in
f1.m or in newton.m.) Based on the iterations you have, what do you judge is the value of the
constant?

(n) What is the true error in your approximate solution, |x − 3|? Is it roughly the same size as
EPSILON?

(o) Try again, starting at x=-0.1, you should get x=-3.

(p) Fill in the following table.

Name Formula guess approxRoot No. Steps

f0 x-1 0.1 _________ _________

f1 x^2-9 0.1 _________ _________

f2 x^5-x-1 10 _________ _________

f3 x*exp(-x) 0.1 _________ _________

f4 2*cos(3*x)-exp(x) 0.1 _________ _________

f4 2*cos(3*x)-exp(x) 1.5 _________ _________

Remark: The theoretical convergence rate of Newton’s method is quadratic. In your work above, you used
this fact to help ensure that your code is correct. This rate depends on an accurate computation of the
derivative. Even a seemingly minor error in the derivative can yield a method that does not converge very
quickly or that diverges. In the above table, none of the cases should have taken as many as 25 iterations.
If they did, check your derivative formula. (As a general rule, if you apply Newton’s method and it takes
hundreds or thousands of iterations but it does converge, check your derivative calculation very carefully. In
the overwhelming majority of cases you will find a bug there.)

7 Non-quadratic convergence

The proofs of convergence of Newton’s method show that quadratic convergence depends on the ratio f ′′

2f ′

being finite at the solution. In most cases, this means that f ′ ̸= 0, but it can also mean that both f ′′ and f ′

are zero with their ratio remaining finite. When f ′′/f ′ is not finite at the desired solution, the convergence
rate deteriorates to linear. You will see this illustrated in the following exercises.

Exercise 3:

(a) Write a function m-file for the function f6=(x-4)^2, returning both the function and its derivative.

(b) You recall using newton to find a root of f1=x^2-9 starting from x=0.1. How many iterations
did it take?

(c) Now try finding the root (x=4) of f6 using Newton, again starting at x=0.1. How many iterations
does it take? Since the exact answer is x=4, the true error is abs(x-4). Is the true error larger
than EPSILON or smaller?

(d) Now try finding the root (x=4) of f7=(x-4)^20 using Newton, again starting at x=0.1. For this
case, increase maxIts to some large number such as 1000 (recall maxIts is the optional third
argument to newton). How many iterations does it take? Is the true error larger than EPSILON

or smaller? In this case, you see that convergence rate can deteriorate substantially.

(e) Look at the final two iterations and compute the values of the ratios

r1 =
|∆x(k+1)|
|∆x(k)|

, and (3)

r2 =
|∆x(k+1)|
|∆x(k)|2

. (4)
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In this case, you should notice that r1 is not nearly zero, but instead is a number not far from 1.0,
and r2 has become large. This is characteristic of a linear convergence rate, and not a quadratic
convergence rate.

In practice, if you don’t know the root, how can you know whether or not the derivative is zero at
the root? You can’t, really, but you can tell if the convergence rate is deteriorating. If the convergence is
quadratic, r2 will remain bounded and r1 will approach zero. If the convergence deteriorates to linear, r2
will become unbounded and r1 will remain larger than zero.

Exercise 4:

(a) We are now going to add some code to newton.m. Because newton.m is working code, it is a good
idea to keep it around so if we make errors in our changes then we can start over. Make a copy
of newton.m called newton0.m, and change the name of the function inside the file from newton
to newton0. If you need to, you can always return to a working version of Newon’s method in
newton0.m. (You should never have two different files containing functions with the same name
because Matlab may get “confused” about which of the two to use.)

(b) Just before the beginning of the loop in newton.m, insert the following statement

increment=1; % this is an arbitrary value

Just before setting the value of increment inside the loop, save increment in oldIncrement:

oldIncrement=increment;

(c) After the statement x=x+increment;, compute r1 and r2 according to (3) and (4) respectively.

(d) Comment out the existing disp statement and add another disp statement to display the values
of r1 and r2.

(e) Use your revised newton to fill in the following table, using the final values at convergence, starting
from x=1.0. Enter your estimate of the limiting values of r1 and r2 and use the term “unbounded”
when you think that the ratio has no bound. As in the previous exercise, use maxIts=1000 for
these tests.

Function numIts r1 r2

f1=x^2-9 ______ ______ ______

f6=(x-4)^2 ______ ______ ______

f7=(x-4)^20 ______ ______ ______

This exercise shows that quadratic convergence sometimes fails, usually resulting in a linear convergence
rate, and you can estimate the rate. This is not always a bad situation–it is converging after all–but now
the stopping criterion is not so good. In practice, it is usually as important to know that you are reliably
close to the answer as it is to get the answer in the first place.

In the cases of (x − 4)2 and (x − 4)20, you saw that r1 turned out to be approaching a constant, not
merely bounded above and below. If r1 were exactly a constant, then

x(∞) = x(n) +

∞∑
k=n

∆x(k)

because it converges and the sum collapses. I have denoted the exact root by x(∞). Because r1 is constant,
for k > n, ∆x(k) = rk−n

1 ∆x(n). Hence,

x(∞) = x(n) +∆x(n)
∞∑

k=n

rk−n
1

= x(n) +
∆x(n)

1− r1
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This equation indicates that a good error estimate would be

|x(∞) − x(n)| ≈ |∆x(n)|
1− r1

Exercise 5:

(a) Comment out the disp statement displaying r1 and r2 in newton.m since it will become a dis-
traction when large numbers of iterations are needed.

(b) Conveniently, r1 either goes to zero or remains bounded. If the sequence converges, r1 should
remain below 1, or at least its average should remain below 1. Replace the if-test for stopping in
newton to

if errorEstimate < EPSILON*(1-r1)

return;

end

Note: This code is mathematically equivalent to errorEstimate=abs(increment)/(1-r1), but
I have multiplied through by (1− r1) to avoid the problems that occur when r1 ≥ 1. Convergence
will never be indicated when r1 ≥ 1 because errorEstimate is non-negative.

(c) Use newton to fill in the following table, where you can compute the absolute value of the true
error because you can easily guess the exact solution. (Continue using maxIts=1000 for this
exercise.) You have already done these cases using the original convergence criterion in Exercise
3, so you can get those values from that exercise.

ex. 3 ex. 3

newton newton newton newton

Function start numIts true err numIts true error

f1=x^2-9 0.1 ______ ______ _______ _______

f6=(x-4)^2 0.1 ______ ______ _______ _______

f7=(x-4)^20 0.1 ______ ______ _______ _______

You should see that the modified convergence does not harm quadratic convergence (about the
same number of iterations required) and greatly improves the estimated error and stopping crite-
rion in the linear case. A reliable error estimate is almost as important as the correct solution–if
you don’t know how accurate a solution is, what can you do with it?

Warning: This modification of the stopping criterion is very nice when r1 settles down to a constant value
quickly. In real problems, a great deal of care must be taken because r1 can cycle among several values,
some larger than 1, or it can take a long time to settle down.
Remark: In the rest of this lab, you should continue using newton.m with the convergence criterion involving
(1− r1).

8 Choice of initial guess

The theorems about Newton’s method generally start off with the assumption that the initial guess is “close
enough” to the solution. Since you don’t know the solution when you start, how do you know when it is
“close enough?” In one-dimensional problems, the answer is basically that if you stay away from places
where the derivative is zero, then any initial guess is OK. More to the point, if you know that the solution
lies in some interval and f ′(x) ̸= 0 on that interval, then the Newton iteration will converge to the solution,
starting from any point in the interval. When there are zeros of the derivative nearby, Newton’s method can
display highly erratic behavior and may or may not converge. In the last part of the previous exercise, you
saw a case where there are several roots, with zeros of the derivative between them, and moving the initial
guess to the right moved the chosen root to the left.
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Exercise 6: In this and the following exercise, you will be interested in the sequence of iterates, not
just the final result. Re-enable the disp statement displaying the values of the iterates in newton.m.

(a) Write a function m-file for the cosmx function used in the previous lab (f(x) = cosx − x). Be
sure to calculate both the function and its derivative, as we did for f1, f2, f3 and f4.

(b) Use newton to find the root of cosmx starting from the initial value x=0.5. What is the solution
and how many iterations did it take? (If it took more than ten iterations, go back and be sure
your formula for the derivative is correct.)

(c) Again, use newton to find the root of cosmx, but start from the initial value x=12. Note that
3π < 12 < 4π, so there are several zeros of the derivative between the initial guess and the root.
You should observe that it takes the maximum number of iterations and seems not to converge.

(d) Try the same initial value x=12, but also use maxIts=5000. (To do this, include 5000 in the call:
newton(’cosmx’,12,5000)) (This is going to cause a large number of lines of printed information,
but you are going to look at some of those lines.) Does it locate a solution in fewer than 5000
iterations? How many iterations does it take? Does it get the same root as before?

(e) Look at the sequence of values of x that Newton’s method chose when starting from x=12. There
is no real pattern to the numbers, and it is pure chance that finally put the iteration near the root.
Once it is “near enough,” of course, it finds the root quickly as you can see from the estimated
errors. Is the final estimated error smaller than the square of the immediately preceeding estimated
error?

You have just observed a common behavior: that the iterations seem to jump about without any real
pattern until, seemingly by chance, an iterate lands inside the circle of convergence and they converge rapidly.
This has been described as “wandering around looking for a good initial guess.” It is even more striking in
multidimensional problems where the chance of eventually landing inside the ball of convergence can be very
small.

Another possible behavior is simple divergence to infinity. The following exercise presents a case of
divergence to infinity.

Exercise 7: Attempt to find the root of f3 = x*exp(-x), starting from x=2. You should find it
diverges in a monotone manner, so it is clear that the iterates are unbounded. What are values of
iterates 95 through 100? This behavior can be proved, but the proof is not required for this lab.

9 No root

Sometimes people become so confident of their computational tools that they attempt the impossible. What
would happen if you attempted to find a root of a function that had no roots? Basically, the same kind of
behavior occurs as when there are zeros of the derivative between the initial guess and the root.

Exercise 8:

(a) Write the usual function m-file for f8=x^2+9.

(b) Apply newton to the function f8=x^2+9, starting from x=0.1. Describe what happens.

(c) Intermediate prints will no longer be needed in this lab. Comment out the
disp statements in newton.m. Leave the error statement intact.
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10 Complex functions

But the function x2 + 9 does have roots! The roots are complex, but Matlab knows how to do complex
arithmetic. (Actually the roots are imaginary, but it is all the same to Matlab.) All Matlab needs is to be
reminded to use complex arithmetic.
Warning: If you have used the letter i as a variable in your Matlab session, its special value as the square
root of -1 has been obscured. To eliminate the values you might have given it and return to its special value,
use the command clear i. It is always safe to use this command, so I always use it just before I start to
use complex numbers. For those people who prefer to use j for the imaginary unit, Matlab understands that
one, too.
Remark: For complex constants, Matlab will accept the syntax 2+3i to mean the complex number whose
real part is 2 and whos imaginary part is 3. It will also accept 2+3*i to mean the same thing and it is
necessary to use the multiplication symbol when the imaginary part is a variable as in x+y*i.

Exercise 9:

(a) Apply newton to f8=x^2+9, starting from the initial guess x=1+1i. (Matlab interprets “1i” and
“3i” as

√
−1 and 3

√
−1 respectively.) You should get the result 0+3i and it should take fewer

than 10 iterations. Recall that if you call the newton function in the form

[approxRoot,numIts]=newton(@f8,1+1i)

then the root and number of iterations will be printed even though there are no intermediate
messages.

(b) Fill in the following table by using newton to find a root of f8 from various initial guesses. The
exact root, as you can easily see, is ±3i, so you can compute the true error (typically a small
number), as you did in Exercise 1.

Initial guess numIts true error

1+1i _______ _________

1-1i _______ _________

10+5i _______ _________

10+eps*i _______ _________

(Recall that eps is the smallest number you can add to 1.0 and still change it.)

What happened with that last case? The derivative is f ′
5(x) = 2x and is not zero near x = (10+(eps)i) ≈

10. In fact, the derivative is zero only at the origin. The origin is not near the initial guess nor either root.
It turns out that the complex plane is just that: a plane. While Newton’s method works in two or more
dimensions, it is harder to see when it is going to have problems and when not. We will elaborate a bit in a
later section and also return to this issue in the next lab.

11 Unpredictable convergence

The earlier, one-dimensional cases presented in this lab might lead you to think that there is some theory
relating the initial guess and the final root found using Newton’s method. For example, it is natural to
expect that Newton’s method will converge to the root nearest the initial guess. This is not true in general!
In the exercise below, you will see that it is not possible, in general, to predict which of several roots will
arise starting from a particular initial guess.
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Consider the function f9(z) = z3 + 1, where z = x + iy is a complex number with real part x and
imaginary part y. This function has the following three roots.

ω1 = −1

ω2 = (1 + i
√
3)/2

ω3 = (1− i
√
3)/2

In the following exercise, you will choose a number of regularly-spaced points in the square given by
|x| ≤ 2 and |y| ≤ 2 and then use your newton.m function to solve f(z) = 0 many times, each time one of
those points as initial guess. You will then construct an image by coloring each starting point in the square
according to which of the four roots was found when starting from the given point. The surprise comes in
seeing that nearby initial guesses do not necessarily result in the same root at convergence.

Exercise 10:

(a) Be sure your newton.m file does not have any active disp statements in it.

(b) Create a function m-file named f9.m that computes the function f9(z) above as well as its deriva-
tive.

(c) Copy the following code to a script m-file named exer4 10.m.

NPTS=100;

clear i

clear which

x=linspace(-2,2,NPTS);

y=linspace(-2,2,NPTS);

omega(1)= -1;

omega(2)= (1+sqrt(3)*i)/2;

omega(3)= (1-sqrt(3)*i)/2;

close %causes current plot to close, if there is one

hold on

for k=1:NPTS

for j=1:NPTS

z=x(k)+i*y(j);

plot(z,’.k’)

end

end

hold off

Be sure to add comments that identify the purpose of the file and your name.

(d) Execute this m-file to generate a plot of 10000 black points that fill up a square in the complex
plane. Please include a copy of this plot with your summary.

(e) What is the purpose of the statement clear i?

(f) What would happen if the two statements hold on and hold off were to be omitted?

(g) Next, discard the two hold statements and replace the plot statement with the following state-
ments:

root=newton(@f9,z,500);

[difference,whichRoot]=min(abs(root-omega));

if difference>1.e-2
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whichRoot=0;

end

which(k,j)=whichRoot;

(h) If the variable root happened to take on the value root=0.50-i*0.86, what would the values of
difference and whichRoot be? (Recall that (sqrt(3)/2)=.866025....)

(i) If the function f9 were not properly programmed, it might be possible for the variable root to
take on the value root=0.51-i*0.88. If this happened, what would the values of difference
and whichRoot be?

(j) The array which contains integers between 0 and 3 but the value 0 should never occur. Matlab has
a “colormap” called “flag” that maps the numbers 1, 2 and 3 into red, white and blue respectively.
Add the following instructions after the loop to plot the array which and the three roots as black
asterisks.

imghandle=image(x,y,which’);

colormap(’flag’) % red=1, white=2, blue=3

axis square

set(get(imghandle,’Parent’),’YDir’,’normal’)

% plot the three roots as blacK asterisks

hold on

plot(real(omega),imag(omega),’k*’)

hold off

Remark: The image command does not plot the array which in the usual way. In order to
get the picture to display in the usual way, I have plotted the transpose of which and also used
“handle graphics” to restore the y-axis to its usual orientation. For more information about
“handle graphics” search for “graphics object identification” in the help documentation or try
this link on the MathWorks web site.

(k) Execute your modified m-file. The position (z=x+i*y) on this image corresponds to the initial
guess and the color values 1 (red), 2 (white) and 3 (blue) correspond to roots 1, 2 and 3 to which
the Newton iteration converged starting from that initial guess. This image illustrates that, for
example, some initial guesses with large positive real parts converge to the root ω1 = −1 despite
being closer to both of the other roots. Please include this plot with your summary file.

It turns out that the set you have plotted is a Julia set (fractal). You can increase the detail of the
plot by increasing NPTS and waiting longer. If you wish to learn more about “Newton Fractals,” I
suggest a Wikipedia article http://en.wikipedia.org/wiki/Newton fractal or a very compre-
hensive paper by J. H. Hubbard, D. Schleicher, S. Sutherland. “How to Find All Roots of Com-
plex Polynomials by Newton’s Method,” Inventiones Mathematicæ 146 (2001)1-33. In addition,
the chatty but informative article http://www.chiark.greenend.org.uk/%7esgtatham/newton
contains interesting information and plots.

12 Newton’s method revisited

One disadvantage of Newton’s method is that we have to supply not only the function, but also a derivative.
In the following exercise, we will try to make life a little easier by numerically approximating the derivative
of the function instead of finding its formula. One way would be to consider a nearby point, evaluate the
function there, and then approximate the derivative by

y′ ≈ f(x+∆x)− f(x)

∆x
(5)
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There are many possible ways to pick step sizes ∆x that change as the iteration proceeds. One way is
considered in Exercise 13 below, but we will look at simply choosing a fixed value in the following two
exercises.

Exercise 11: Make a copy of newton.m and call it newtonfd.m. The convergence criterion should
involve the factor (1-r1) in newtonfd.m because using an approximate derivative usually leads to
slower linear convergence.

(a) Change the signature (first line) to be

function [x,numIts]=newtonfd(f,x,dx,maxIts)

and change the comment lines to reflect the new function.

(b) Since maxIts is now the fourth variable, change the test involving nargin to indicate the new
number of variables.

(c) Replace the evaluation of the variable derivative through a function call with the expression
described in Equation (5) using the constant stepsize dx.

(d) Check out your code using the function f1(x)=x^2-9, starting from the point x = 0.1, using
an increment dx=0.00001. You should observe essentially the same converged value in the same
number (±1) of iterations as using newton.

It turns out that the function f1(x)=x^2-9 is an “easy” function to solve using Newton iterations. More
“difficult” functions require a more delicate choice for dx.

Exercise 12: For the two functions f2(x)=x^5-x-1 and f6(x)=(x-4)^2, and the starting point x =

5.0, compute the number of steps taken to converge using the true Newton method, and newtonfd

with different stepsizes dx. You will have to increase the value of maxIts by a very great deal to get
f6 to converge for the cases of large dx.

Number of steps f2 Number of steps f6

using newton __________________ __________________

dx = 0.00001 __________________ __________________

dx = 0.0001 __________________ __________________

dx = 0.001 __________________ __________________

dx = 0.01 __________________ __________________

dx = 0.1 __________________ __________________

dx = 0.5 __________________ __________________

As you can see, the choice of dx is critical. It is also quite difficult in more complicated problems.

Remark: As mentioned earlier, Newton’s method generally converges quite quickly. If you write a Newton
solver and observe poor or no convergence, the first thing you should look for is an error in the derivative. One
way of finding such an error is to apply a method like newtonfd and print both the estimated derivative and
the analytical derivative computed inside your function. They should be close. This trick is especially useful
when you are using Newton’s method in many dimensions, where the Jacobian can have some correctly-
computed components and some components with errors in them.

You saw the secant method in Lab 3, and it had the update formula

x = b−
(

b− a

f(b)− f(a)

)
f(b). (6)

Exercise 13:
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(a) Compare (6) with (1) and show that by properly identifying the variables x, a, and b then (6) can
be interpreted as a Newton update using an approximation for f ′(x(k)). Explain your reasoning.

(b) Starting from your newton.m, copy it to a new m-file named secant4.m and modify it to carry
out the secant method. The secant method requires an extra value for the iterations to start, but
there is only the value x in the signature line. Take b=x and a=x-0.1 only for the first iteration.
Do not use secant.m from the previous lab because it uses a different convergence criterion. Fill
in the following table.

Newton Newton secant4 secant4

Function start numIts solution numIts solution

f1=x^2-9 0.1 ______ ______ ______ ______

f3=x*exp(-x) 0.1 ______ ______ ______ ______

f6=(x-4)^2 0.1 ______ ______ ______ ______

f7=(x-4)^20 0.1 ______ ______ ______ ______

You should observe that both methods converge to the same solutions but that the secant method
takes more iterations, but not nearly so many as newtonfd with a larger fixed dx. This is because
the theoretical convergence rate is quadratic for Newton and (1+

√
5)/2 ≈ 1.62 for secant because

of the approximation to the derivative.

13 Extra Credit: Square Roots (8 points)

Some computer systems compute square roots in hardware using an algorithm often taught in secondary
school and similar to long division. Other computer systems leave square roots to be computed in soft-
ware. Some systems, however, use iterative methods to compute square roots. With these systems, great
care must be taken to be sure that a good initial guess is chosen and that the stopping criterion is reli-
able. You can find a very technical discussion of these issues in a paper by Liang-Kai Wang and Michael
J. Schulte, “Decimal Floating-Point Square Root Using Newton-Raphson Iteration,” Proceedings of the
16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP 05),
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.65.7220

Exercise 14: One well-known iterative method for computing the square root of the number a is

x(k+1) = .5
(
x(k) +

a

x(k)

)
. (7)

This can be started with, for example, x(0) = .5(a + 1). This initial guess is not optimal but it is
reasonable because

√
a is always between a and 1.

(a) Show that (7) is the result of applying Newton’s method to the function f(x) = x2 − a.

(b) In the case a > 0, Explain why convergence cannot deteriorate from quadratic. For this case, it
makes sense to use a relative error estimate to stop iterating when

|x(k+1) − x(k)| ≤ 10−15|x(k+1)|.

(c) Write a Matlab function m-file named newton sqrt.m to compute the square root using (7). Write
this function directly from (7)—do not call your previously-written newton function.

(d) Fill in the following table using your newton sqrt.m. (The true error is the difference between
the result of your function and the result from the Matlab sqrt function.)
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Value square root true error no. iterations

a=9 ___________ ___________ __________

a=1000 ___________ ___________ __________

a=12345678 ___________ ___________ __________

a=0.000003 ___________ ___________ __________
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