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A fourth order Runge Kutta step involves several initial test steps.

ODE’s by a Runge-Kutta method

If the Euler method requires too many steps, we can select a more accurate solver from the Runge-
Kutta family.

1 How accurate is the Euler method?

We are interested in approximately solving an ordinary differential equation with an initial condition:

y′ = f(t, y) (a given derivative function we will also call “dydt()”)

y(t0) = y0 (a given initial value)

and so far we have used the forward Euler method. Given the pair of values (t0, y0) and a stepsize which we
call dt or h, the method produces the approximation (t1, y1) for the next time, where

t1 = t0 + dt;

y1 = y0 + dt ∗ dydt(t0, y0);

Now where did the Euler estimate come from? Let’s suppose the exact solution y(t) of the ODE is “reasonably
smooth” - in this case, assume it has at least two continuous derivatives over the time interval we are interested
in. Then by Taylor’s theorem we have

y(t1) = y(t0) + (t1 − t0) y′(t0) +
1

2
(t1 − t0)2 y”(ξ)
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for some point t0 ≤ ξ ≤ t1.

If we compare the Euler method and the Taylor result, we can evaluate the absolute value of the error in
our first Euler step, known as the “local error”:

Euler local error = |y(t1)− y1| =
1

2
dt2 |y”(ξ)|

This tells us that if we cut the stepsize in half, the error bound on our first Euler step would be multiplied
by a fourth. This suggests why a smaller step size helps. For the Euler method, we say the the local error
behaves like dt2, which we can symbolize by

Euler local error ∝ dt2

or we say this local error is O(dt2), pronounced “order of dt squared”.

However, we are interested in approximating the solution from t0 all the way to a fixed final time. say T , and
then estimating the “global error”, that is, an upper bound on the absolute value of the difference between
our list of approximate values and the exact solution at those times. If we know the local error behavior, we
can actually make a statement about the global error.

We can see how this might be true in the case of the Euler method. If we cut the stepsize in half, then we
double the number of steps we have to take to reach T . Roughly speaking, we take twice as many steps,
each having one quarter the local error, which turns out to give about half the global error at the final time.

Assuming the exact solution is twice continuously differentiable over the interval [t0, T ], then the local error
for the forward Euler method is O(dt2) and the global error is O(dt).

In other words, cutting the stepsize in half will divide the very first error by 4, but overall, this will only
tend to reduce the error everywhere by half. Unfortunately, if we have a difficult ODE to solve, and our
first attempt at solving it with the Euler method gives us a very large global error, then we may have to
reduce the stepsize many times before we see a reasonable approximation. We saw this problem already in
the predator/prey ODE.

Thus, if we encounter an ODE for which the Euler method does not seem to be giving us a good approxima-
tion, and we suspect that we would need a very small time step to proceed, we should be interested in using
other methods which have a smaller local error behavior, because they should get us good results faster.

As it turns out, the Euler method can be regarded as the first member of a family known as Runge-Kutta
methods. When we think of it this way, the Euler method can be renamed as rk1, where the “1” indicates
that it produces a global error characterized as O(dt1). We will now look at the next Runge-Kutta method,
known as rk2, for which the global error is O(dt2). We expect this method to do better on our predator-prey
problem.

2 rk2.m, an ODE solver with global error O(dt2)

The Euler method worked by evaluating the ODE right hand side at the starting point, and then behaving
as this slope was a good estimate of the behavior of the curve over the interval [t, t + dt]. If we want an
improved solution at t + dt, we need a better estimate for the slope over the interval. The Runge-Kutta
method rk2 does this by trying to average the slopes at the two endpoints.

In order to evaluate the slope at the far endpoint, we need a value for y there. We don’t have such a value,
but we can use the Euler method to estimate it. So in other words, the rk2 method starts out by using the
Euler method to estimate the next solution. It uses the estimated next solution to evaluate the derivative
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at the far end. Then it averages the near and far derivatives to get a slope estimate over the interval. And
it uses that improved estimate to take the step.

Here is a sketch of the process. We assume we have computed a solution estimate (tn, yn), which we think
of as the “near” data. We want to make an estimate (tn+1, yn+1) at the “far” end of our current interval:

fnear = y′(tn, yn) Slope at near end

yfar = yn + dt y′(tn, yn) Estimate far solution using Euler step

ffar = y′(tn+1, yfar) Estimate slope at far end

yn+1 = yn + dt (fnear + ffar)/2 Forward step using improved slope estimate

Here is a MATLAB version of this algorithm:

1 function [ t , y ] = rk2 ( dydt , tspan , y0 , n )
2
3 dt = ( tspan (2 ) − tspan (1) ) / n ;
4
5 t (1 , 1 ) = tspan (1) ;
6 y ( 1 , : ) = y0 ( : ) ;
7
8 for i = 1 : n
9 f1 = dydt ( t ( i , 1 ) , y ( i , : ) ) ;

10 f2 = dydt ( t ( i , 1 ) + dt , y ( i , : ) + dt ∗ f1 ’ ) ;
11 t ( i +1 ,1) = t ( i , 1 ) + dt ;
12 y ( i +1 , : ) = y ( i , : ) + dt ∗ ( f1 ’ + f2 ’ ) / 2 . 0 ;
13 end
14
15 return
16 end

Listing 1: MATLAB code for rk2 method.

Try to create a copy of rk2.m yourself. Make sure you think about what is going on in each line. In
particular, notice that the solution vector y() is written as a 2-dimensional vector. What is stored along a
row, and what is stored along a column?

Because the derivative vectors f1 and f2 are column vectors, we have to transpose with an apostrophe sign
when we want to form expressions with the row vector information in y. MATLAB makes a distinction
between row and column vectors, and the MATLAB ODE interface expects column vectors for derivatives
and row vectors for individual solutions. Don’t worry too much about this for now, but you should start
becoming aware of how MATLAB vectors work, and be able to identify the difference between row and
column vectors.

3 predator rk2.m uses rk2 to solve the predator ODE

Because the rk2.m code has the same input and output format as euler.m, we can rerun the predator/prey
ODE with this new solver. We can make a copy of predator euler.m and call it predator rk2.m, and replace
the word euler by rk2. In particular, our call to the ODE solver becomes:

1 [ t , y ] = rk2 ( dydt , tspan , y0 , n ) ;

Listing 2: Calling the rk2 ODE solver.

For the euler() solver, we had to use as many as n = 100, 000 steps to get a reasonable solution to the
predator prey problem. Because the global error in the rk2() solver behaves quadratically, we could hope

3



to get equivalent accuracy with somewhere between 100 and 1,000 steps. Can you explain why a method of
order 2 might be as accurate as a method of order 1, while using roughly the square root of the number of
steps?

Investigate this claim! Use the rk2 solver on the predator/prey problem with steps n = 100, 200, 300, ...
until you get a solution that you believe is accurate.

To choose a satisfactory value of n, consider the evidence of the three types of plots:

1. the plots of y(t) and y’(t) should each have repeated peaks of almost the same height;

2. the phase plot of y(t) versus y’(t) should look like a smooth closed curve;

3. the convervation plot should show very litle change.

The conservation plot should give you the best report on whether the solution is accurate.

You should be able to conclude that rk2() got you a good answer with much less work than the Euler method
aka rk1().

4 rk4.m, an ODE solver with global error O(dt4)

If we are interested in even higher accuracy, there is a sequence of Runge-Kutta ODE solvers of increasing
order. One of the popular methods is rk4, whose global error tends to behave like O(dt4). We will use this
method in a few examples; the user input/output interface is the same as we have seen for euler/rk1 and
rk2. On the other hand, the actual MATLAB code is complicated and more difficult to explain, so we will
simply display it, and remark that it uses four samples of the right hand side function in order to make a
very accurate approximation of the next solution.

1 function [ t , y ] = rk4 ( dydt , tspan , y0 , n )
2
3 m = length ( y0 ) ;
4 t = zeros ( n + 1 , 1 ) ;
5 y = zeros ( n + 1 , m ) ;
6
7 t0 = tspan (1 ) ;
8 t s top = tspan (2 ) ;
9 dt = ( t s top − t0 ) / n ;

10
11 t (1 , 1 ) = t0 ;
12 y ( 1 , : ) = y0 ( : ) ;
13
14 for i = 1 : n
15
16 f1 = dydt ( t ( i , 1 ) , y ( i , : ) ) ;
17 f2 = dydt ( t ( i , 1 ) + dt / 2 . 0 , y ( i , : ) + dt ∗ f1 ’ / 2 . 0 ) ;
18 f3 = dydt ( t ( i , 1 ) + dt / 2 . 0 , y ( i , : ) + dt ∗ f2 ’ / 2 . 0 ) ;
19 f4 = dydt ( t ( i , 1 ) + dt , y ( i , : ) + dt ∗ f3 ’ ) ;
20
21 t ( i +1 ,1) = t ( i , 1 ) + dt ;
22 y ( i +1 , : ) = y ( i , : ) + dt ∗ ( f1 ’ + 2 .0 ∗ f2 ’ + 2 .0 ∗ f3 ’ + f4 ’ ) / 6 . 0 ;
23
24 end
25
26 return
27 end

Listing 3: The rk4 ODE solver.

Unless you are very patient and careful, I suggest you copy rk4.m from the web site, rather
than trying to type it in!
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As we saw in the rk2.m source code, the right hand side values are column vectors, and have to be transposed
with an apostrophe before being used in computations involving the row vectors containing solution values.

5 expsin solution.m, a new test ODE

So far we have judged the improved accuracy of Runge Kutta methods by looking at plots. Now it’s time
to get seriously numerical. To do so, we’ll consider a simple test function called expsin, whose formula is

y(t) = esin(t)

Write a corresponding MATLAB function expsin solution.m with the structure:

1 function value = exp s i n s o l u t i o n ( t )
2 value = ? ;
3 return
4 end

Listing 4: Pseudocode for expsin function.

Plot this function over the interval 0 ≤ t ≤ 10, and observe that it has a simple periodic behavior.

6 expsin deriv.m, the derivative function

Determine the formula for y′(t).

Write a corresponding MATLAB function expsin deriv.m with the structure:

1 function value = exp s i n d e r i v ( t , y )
2 value = ? ;
3 return
4 end

Listing 5: Pseudocode for expsin ODE right hand side.

7 expsin errors.m, solve the expsin ODE 3 ways

You will need to write a MATLAB function expsin errors.m which solves the expsin problem. You are going
to solve it using each of the methods rk1, rk2, rk4, and for each method you are going to use several values
of the number of steps, n=5, 10, 20, 40, 80. It turns out you could do this by writing a program that
does all 15 computations, or a program that does one particular computation, which you have to modify for
each new computation.

Solve the problem over the interval 0 ≤ t ≤ 10, using an initial value of y0=1.0.

Each time that you compute the approximate solution, you must also use expsin solution(t) to compute the
exact solution at the same points, and use rms.m to compute the RMS norm of the difference between the
approximate and exact solutions.

1 function e xp s i n e r r o r s ( n )
2 dydt = ?
3 t0 = ?
4 t s top = ?
5 tspan = ?
6 y0 = ?
7
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8 [ t , y1 ] = rk1 ( ? ) ;
9

10 y = ?
11
12 e = rms ( y − y1 ) ;
13
14 fpr intf ( 1 , ’ n = %d , | | y−y1 | | = %g\n ’ , n , e ) ;
15
16 return
17 end

Listing 6: An output of expsin errors.m for rk1

Write the MATLAB code necessary to solve the expsin ODE with each of the three Runge-
Kutta methods, and the several values of n.

Thus, you will be filling out the entries in the following table, where y1, y2 and y4 are the approximate
solutions returns by rk1, rk2 and rk4, and y is the exact solution vector.

rk1 rk2 rk4

rms(y-y1) rms(y-y2) rms(y-y4)

n = 5: ......... ......... .........

n = 10: ......... ......... .........

n = 20: ......... ......... .........

n = 40: ......... ......... .........

n = 80: ......... ......... .........

I expect that you will observe several things in this table:

• for a given n, the RMS error decreases reading from left to right (increasing Runge-Kutta order);
• for a given Runge Kutta solver, the RMS error decreases as we read from top to bottom (increase n;
• for a given Runge Kutta solver, doubling n divides the error roughly by 2, 4, or 16;

8 Homework #4

Submit a copy of your completed table to trenchea@pitt.edu
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