
Euler:
A basic ODE solver

MATH1902: Numerical Solution of Differential Equations
http://people.sc.fsu.edu/∼jburkardt/classes/math1902 2020/euler/euler.pdf

The Euler method steps off in the right direction, and gradually drifts away.

Euler

Writing a simple, general Euler code to solve a differential equation will give you an idea of the kind
of mathematical problems we are interested in, and the computational methods we use to solve them.

1 Introduction

This is an introduction for all of us. You would like to know what we are working on. We would like to
know how well prepared you are for the computational efforts in this directed study class.

We ask you to read this introductory material, which outlines a method for approximating the solution
of an ordinary differential equation (ODE). This method can be expressed in the MATLAB programming
language, and so we ask you to try to write euler.m, a file of MATLAB commands that carry out the
procedure for a general ODE. Then we consider a specific ODE, which describes the shape of a curve by
giving a starting value and the direction of motion at all subsequent times, and we write a MATLAB file
humps deriv.m which expresses the direction information. Now we are ready to solve the problem, but we
need one more file euler humps.m, which specifies the initial value, tells the euler method which problem to
solve, and makes a plot of the results.

We encourage you to try to follow the directions below that guide you in writing these programs and using
them. Please let us know if you can’t figure out to form a particular MATLAB expression, or can’t understand
an error message.

We hope that you will be able to write the three programs, run them together, and get a nice plot of the
results. You will be asked to submit your plot file as evidence of your work.

1

2 A differential equation

Consider the following differential equation, which can be thought of as defining the slope of a curve y = f(t)
at every point.

dy

dt
=

−2(t− 0.3)

((t− 0.3)2 + 0.01)2
+

−2(t− 0.9)

((t− 0.9)2 + 0.04)2

If we also know the value of the function at a particular time, then theoretically we may have enough
information to recover the formula for the original function. However, often this process is not possible.
Nonetheless, we can use this information to construct an approximate picture of the solution, by estimating
the value of the function at a sequence of points. This is the meaning of the numerical solution of a differential
equation.

For this example, we will assume the initial condition y(0) = 5.1765, and we will want to construct a plot of
y(t) over the interval 0 ≤ t ≤ 2.

3 humps deriv.m: the derivative function

In MATLAB, a derivative function has a typical structure. If we follow this structure, then we can use the
same derivative function with many different ODE solvers that MATLAB provides. Even though we aren’t
ready to do that yet, we will follow the pattern, and this will pay off in the future.

Write a MATLAB function named humps deriv.m, with the following format, filling in the details:

1 function dydt = humps deriv (t , y)
2 dydt = (the formula above) ;
3 return
4 end

Listing 1: Outline of the derivative function humps deriv.m.

In MATLAB, the symbols *, /, and ˆ are used to indicate multiplication, division, and exponentiation. You
will need to be careful to use parentheses to correctly define your fractions. In general, you should terminate
each MATLAB command with a semicolon; otherwise MATLAB will print out the value computed by that
command, which is usually not what you want. If your text line is very long, you can break it into two by
using three periods, as in:

1 x = 1 + 2 + 3 + 4 + 5 + 6 ;
2
3 x = 1 + 2 + 3 . . .
4 + 4 + 5 + 6 ;

Listing 2: You can use a triple period to break a long line.

4 euler.m: approximate ODE solver

The forward Euler method for solving an ODE is very simple:

• Assume your position is (t,y);
• Assume you have chosen a stepsize dt;
• Compute the current slope dy/dt;
• Update your position to t+dt, y+dy/dt*dt;
• Repeat as often as desired.

2

Now we will write a corresponding MATLAB function, named euler.m. Note that this function is “general”,
that is, it is not written for a specific problem, but allows the user to specify, through input variables, the
details of the particular problem to be solved:

The function will have the rough form:

1 function [t , y] = eu l e r (dydt , tspan , y0 , n)
2 (i n i t i a l i z a t i o n)
3 for i = 1 : n
4 compute next t and y
5 end
6 return
7 end

Listing 3: Outline of the general ODE solver euler.m.

Here, the input variables are:

• dydt is the name of a derivative function. When we specify a particular name, we will precede it with
an @ sign.

• tspan is a vector of length 2. t(1) is the start, and t(2) the final time.
• y0 contains the value of y at the initial time.
• n is the number of equal steps to take from t(1) to t(2).

and the output is:

• t a vector of length n+1, containing the initial time, and the n later times.
• y is a vector of length n+1, containing the initial y0, and the n later estimates.

5 Filling in the details

The initialization part of the code will look something like this

1 t = ? ;
2 y = ? ;
3 t (1) = ? ;
4 y (1) = ? ;
5 dt = ? ;

Listing 4: The initialization commands for euler.m

Specifically, we need to do the following things:

• create vectors t and y, to store the results. We can use the MATLAB command

vector = zeros (rows, 1); % rows is the number of rows in the vector.

We are going to take n steps, but we also want to include the initial values, so both vectors should be
created with n+1 rows;

• Set the first entries of t (contained in tspan(1)) and y (the value y0).
• Set the time step dt. What is the formula for dt so that n steps of size dt will take us from tspan(1)

to tspan(2)?

Inside the for loop, we need to evaluate the next values of the variables t(i+1) and y(i+1).

1 t (i +1) = t (i) + dt ;
2 y (i +1) = y(i) + dt ∗ dydt (t (i) , y (i)) ; % We eva lua t e the dydt func t i on here .

Now the euler code should be ready to go.

3

6 Use the solver and the derivative functions to make an estimate

Let’s try a quick test run of your codes to see if things are correct. Don’t end this command with a semicolon.
We want to see the value of the output: You can issue the following command:

1 [t , y] = eu l e r (@ humps deriv , [0 . 0 , 2 . 0] , 5 . 1765 , 10)

Listing 5: Try 10 steps from 0 to 2.

1 t =
2
3 0.00000
4 0.20000
5 0.40000
6 0.60000
7 0.80000
8 1.00000
9 1.20000

10 1.40000
11 1.60000
12 1.80000
13 2.00000
14
15 y =
16
17 5 .1765 e+00
18 1 .7675 e+01
19 1 .1867 e+02
20 2 .1050 e+01
21 1 .6150 e+01
22 2 .9192 e+01
23 1 .2072 e+01
24 4 .4357 e+00
25 1 .7620 e+00
26 5 .8524 e−01
27 −3.0498e−02

Listing 6: Output from a 10 step run.

Now, to see a picture of your results, type:

1 plot (t , y) ;

Listing 7: Plotting your data.

7 euler humps.m: Collecting commands into a script

Computing is an experimental process. In a MATLAB interactive session, you may need to type 6 or 10
commands in a row before you get a result. If you want to see the result again, you have to remember what
those commands were, and type them all over again correctly. If you want to repeat the experiment, but
with one parameter changed, you again may have to type in your commands again. This happens especially
when the result of one command depends on the output of previous commands.

So while interactive experimentation is very helpful in feeling your way towards a solution, I strongly recom-
mend that, once you know what you want to do, you create a script file that lists your commands in order.
That way, you can easily execute the entire experiment with a single command. If you want to change a
small part of the experiment, you use an editor to modify just that one item, and run it again. If there are
always one or two variables that should be specified interactifely, these can simply be input to your script.

4

Here’s how it would work for the example we just ran. First, we choose a name for the script file. Here, I
would choose the name euler humps.m. As it turns out, the number of steps to be taken really ought to be
chosen at the last minute, so we will make that an input variable:

1 function euler humps (n)
2 return
3 end

Listing 8: Script version 1.

Now we stick in the commands that we used before, except that, instead of using the value 10, we now use
the input value n:

1 function euler humps (n)
2
3 [t , y] = eu l e r (@humps deriv , [0 . 0 , 2 . 0] , 5 . 1765 , n) ;
4 plot (t , y) ;
5
6 return
7 end

Listing 9: Script version 2.

At this point, you can run your script with 20 steps. This should immediately produce a plot, and it should
be a little smoother than the previous one:

1 euler humps (20) ;

Listing 10: Run the script.

Now our script includes some quantities that show up only as numbers. I prefer to use named variables, that
suggest what these quantities mean. So, even though it’s more work, I would rewrite the script as:

1 function euler humps (n)
2
3 dydt = @ humps deriv ;
4 t s t a r t = 0 . 0 ;
5 t s top = 2 . 0 ;
6 tspan = [t s t a r t , t s top] ;
7 y0 = 5 . 1765 ;
8
9 [t , y] = eu l e r (dydt , tspan , y0 , n) ;

10
11 plot (t , y) ;
12
13 return
14 end

Listing 11: Script version 3.

and you can see that my call to euler() uses the same names as were used in the text of the euler()

function.

Finally, it’s possible to improve the look of the plot. MATLAB plotting commands can be a bit mysterious,
so here I will simply list them, and note that the print() command actually allows us to save a copy of the
plot as a png file.

1 function euler humps (n)
2
3 dydt = @ humps deriv ;
4 t s t a r t = 0 . 0 ;
5 t s top = 2 . 0 ;

5

6 tspan = [t s t a r t , t s top] ;
7 y0 = 5 . 1765 ;
8
9 [t , y] = eu l e r (dydt , tspan , y0 , n) ;

10
11 plot (t , y , ’ l i n ew id th ’ , 3) ;
12 grid (’ on ’) ;
13 xlabel (’<−− T −−> ’) ;
14 ylabel (’<−− Y(T) −−> ’) ;
15 t i t l e (’ Euler approximation to humps ODE’) ;
16 print (’−dpng ’ , ’ euler humps . png ’) ;
17
18 return
19 end

Listing 12: Script version 4.

Try this improved version of the script, using n=40 as input. You should see the plot on the screen, but
you should also find a PNG plot file euler humps.png in your current directory. Remember the print()

command, since we will often ask you to verify a homework problem by sending us a PNG plot of the results!

8 Homework #1

If you followed the commands in the previous section, then you have created a PNG plot file euler humps.png
for the case n=40. As a verification, send this file as an attachment to trenchea@pitt.edu.

6

