
The Traveling Salesperson Problem
Mathematical Programming with Python

https://people.sc.fsu.edu/∼jburkardt/classes/math1800 2023/tsp/tsp.pdf

A State Capital Road Trip.

”TSP”

� The Traveling Salesperson Problem (TSP) is an optimization problem;
� It seeks the shortest round trip visiting a set of cities;
� The problem has an “impossible” complexity of n!;
� Versions of this problem need to be solved for applications ranging from transportation (Federal

Express package delivery) to circuit printing (minimizing the travel of the drill or print head);
� Many ideas have been suggested for approximate solutions.

To follow along with the three examples I will discuss, you might want to copy the following files from the
class website:

city locations code

---------------------- --------------

five_position.txt five.py

fifteen_position.txt fifteen.py

fortyeight_position.txt fortyeight.py

1 The Traveling Salesperson Problem

The traveling salesperson problem supposes that a salesperson has been assigned to make a sales trip that
visits all the cities on a list, to return then to home base. The additional constraint is that, out of all possible
such trips, the shortest one should be chosen.

1

Since we like to think small, it would seem that, in the case of a list of 5 or 6 cities, this is a simple matter
of listing all the possible trips, measuring each one, and choosing the shortest. This is known as a “brute
force” approach, because it takes a simple-minded procedure that is guaranteed to work, as long as we have
enough time. But, as it turns out, we can only solve “baby-sized” problems this way.

If there are n cities (including the home city), then the salesperson has n − 1 choices for the first visit,
n − 2 for the second, and so on. It thus turns out that there are essentially (n − 1)! possible trips to be
considered. Any time you see a factorial in a formula, you have to be worried, because factorials explode
in size very quickly. Suppose, for instance, that the salesperson plans to visit every state capital in the US.
Then we are talking about something like 49! distinct itineraries to consider. You should easily see that this
number, whatever it is, has more than 49 digits, and is far beyond the size of anything we can deal with
computationally.

But since these kinds of problems arise in practical business and industrial applications, they have to be
solved, or at least solve approximately. And so there are a number of very sensible ideas for trying to find
decent estimates of a TSP itinerary.

In this discussion, we will look at some sample problems, and how to implement various techniques for
estimating a good solution.

2 A tiny problem

We begin by examining a tiny problem, with which we can start to explore the TSP. We will assume we
have five cities, named Aspen, Boston, Clayton, Dayton, and Eaton, with (x, y) map coordinates as follows:

10 0

0 70

90 30

60 80

30 50

It will be useful to compute a city-to-city distance table:

d i s t ance = np . z e r o s ([city num , city num] , dtype = int)
for i in range (0 , city num) :

for j in range (0 , city num) :
d i s t ance [i , j] = int (np . l i n a l g . norm (po s i t i o n [i , :] − po s i t i o n [j , :]))

and if we round the distances to integers, we get

0 70 85 94 53

70 0 98 60 36

85 98 0 58 63

94 60 58 0 42

53 36 63 42 0

We can visualize our data using graphviz, with the distances (rounded to whole numbers) marked along the
connecting edges:

from graphviz import Graph
names = [’Aspen ’ , ’ Boston ’ , ’ Clayton ’ , ’Dayton ’ , ’ Easton ’]
dot = Graph (format = ’png ’)
for n in names :

dot . node (n)
for i in range (0 , city num) :

for j in range (i + 1 , city num) :

2

dot . edge (names [i] , names [j] , str (d i s t ance [i , j]))
dot . render (’ f i v e d i s t a n c e . dot ’ , view = False)

which results in the following picture:

Now we suppose that a traveler wishes to start at Aspen and make a your of the other cities, ending back at
Aspen. The traveler is an optimizer, and wishes to make this trip in the most efficient way possible, which
in this case simply means that the itinerary should be as short as possible. This is a version of the traveling
salesperson problem, often abbreviated to TSP. While it may seem a simple-minded puzzle, variations of this
problem constantly arise in business, transportation, design. Even in the printing of computer circuit boards,
it is desired to minimize the travel of the printing head as it moves from spot to spot.

We will start our consideration of the TSP by looking at how to solve our five city problem; then we will
realize that as the number of cities grows, the problem becomes impossibly hard to solve exactly.

3 Solution by brute force

Given that there are many possible itineraries for our five city tour, how can we find the shortest one? For
many problems, our approach would normally be to find some formula that the best solution satisfies, or
some way of quickly sorting through a sequence of better and better solutions. However, for the TSP, there
are not many obvious ways to guess something close to the best itinerary.

On the other hand, we know there is a solution, because there are only finitely many different itineraries, and
so there must be a shortest length. With five cities, there are actually only 5! = 120 itineraries to consider;

3

this is the number of permutations that can be formed from five objects. (In fact, we can actually cut this
down to 4!/2 = 12 if we think about it!)

So a simple-minded approach is simply to generate every possible permutation, measure the length of the
corresponding path, and report the permutation corresponding to the shortest length. Because this approach
makes no attempt to take advantage of any patterns or structure in the problem, it is known as the brute
force method.

Presumably, our itinerary can be described as a permutation, so we need a function that can report the
length of the corresponding path:

def path l ength (d i s tance , perm) :
mi leage = 0 .0
c0 = perm[−1]
for c1 in perm :

mi leage = mileage + d i s t ance [c0 , c1])
c0 = c1

return mileage

and we need a way to generate all the itineraries.

from i t e r t o o l s import permutat ions
perms = permutat ions (np . arange (city num))
m i l e a g e s ho r t e s t = np . i n f
for perm in perms :

mi leage = path l ength (d i s tance , perm)
i f (mi leage < mi l e a g e s ho r t e s t) :

perm shorte s t = perm
mi l e a g e s ho r t e s t = mileage

The itertools library allows us to generate every permutation of a given list, one at a time. So the value
of perm will start at [0,1,2,3,4], then [0,1,2,4,3] and so on, all the way to [4,3,2,1,0].

Almost immediately, our program returns to report that the best itinerary is has mileage 291, using the
cities in the sequence (0, 1, 4, 3, 2), or by name:

Aspen => Boston => Easton => Dayton => Clayton => Aspen

4 Replacing brute force by greed

We are actually going to want to work with a problem involving 48 cities. We have heard that the problem
gets more difficult as the number of cities increases. So we prepare an intermediate challenge involving 15
cities, whose locations are defined in the file fifteen.txt. However, when we apply the code that worked on
five.txt, we are frustrated as we wait a minute, five minutes, 10, 15 minutes with no result. Should this be a
surprise?

The 5 city problem required generating 10! = 120 permutations. For the 15 city problem, there are 15! =
1, 307, 674, 368, 000, a value we can collect by calling math.factorial(15). We might not be afraid to ask
for a million permutations; a billion seems like a lot, but here we are asking for more than a trillion. If our
original program solved 120 permuations in 1 second, then our new program might be expected to give us
an answer in

1,307,674,368,000/120/60/60/24/365 = 345 years

So we can safely assume that the brute force method is already a completely hopeless approach at size 15.
If we want any hope of an answer, we need a new approach. Aside from brute force, there are no algorithms
that can guarantee a solution of TSP. Therefore, we are looking instead for heuristics, that is, ideas or
approaches that seem like a reasonable way to get close to an answer.

4

The approach we will consider next is called the greedy TSP algorithm. Instead of having a big strategy, the
greedy algorithm takes a very short-sighted approach:

1. Initialize shortest path length as ∞, that is, np.inf;

2. Consider each city as the starting point for a tour;

3. Select the next edge of the tour as the shortest edge from your current location to an unvisited city;

4. Repeat until you return to your starting city.

5. Remember this tour if it is the shortest so far;

For our fifteen city problem, the code finds a greedy estimate in three steps.

Greedy tour starting at city 0 costs 70

Greedy tour starting at city 4 costs 65

Greedy tour starting at city 8 costs 58

5 How rare are short paths?

We might think that we can stumble upon a solution by simply randomly sampling a lot of permutations,
and taking the best one we encounter. This could be a reasonable approach if short solutions are relatively
common. Let’s continue with our 15 city problem, generate 1,000,000 permutations, compute the length of
each, and make a histogram. This would suggest whether coming close by random selection is going to be a
viable option. We already have one piece of evidence: at least one path is of length 58.

Sampling might be an effective idea as long as short paths are not extremely rare. To see this issue, suppose
we are trying to find the smallest point (the origin) in a multidimensional sphere of radius 1. In dimension
10, 65% of the points are more than 0.9 from the origin. This rises to 88% in 20 dimensions, and 99% in 50
dimensions. If our TSP problem is like sampling a high dimensional sphere, then random sampling will be
a waste of time. Let us try generating sample permutations for our 15 city problem, and see what the data
tells us.

samples shortest path
100 128

1,000 108
10,000 91

100,000 94
1,000,000 76

So, at least for the 15 city case, it looks like if we are very very persistent, we might get close to the path of
length 58. However, as the problem size increases, the rate of improvement will drop drastically.

Here is the histogram of all the path lengths found when generating 1,000,000 samples:

5

It’s clear from the plot that most of the random permutations represent horribly inefficient tours whose
average length is often triple the best that we saw. Again, this is for a small problem, and the discrepancy
will become much much worse for a longer tour.

6 The forty eight state capital challenge

Now it’s time to see if we can get a reasonable solution to what is actually a very small version of the TSP,
namely, the challenge to visit all 48 state capitals in the “mainland” US. On the one hand, modern researchers
routinely do an excellent job of estimating the solution when tours involve hundreds of thousands of cities;
on the other hand, we saw how difficult the 15 city problem was, with more than a trillion permutations to
consider. The 48 city problem is simply unimaginably harder than that.

We can certainly get a rough guess for a solution by trying the greedy approach, which simply computes 48
particular permutations and returns the best one. In that case, we get a tour length of 178, but the plot
shows that our solution is far from ideal:

6

Any tour which crosses itself cannot be optimal (at least in realistic Euclidean geometry!).

In our second investigation, we try random sampling.

samples shortest path
100 744

1,000 633
10,000 626

100,000 588
1,000,000 551

Here, we see that the problem is resisting us. We are quite far away from the greedy solution of 178, and
the rate of decrease is not very promising.

It is time to search for a better approach that tries harder than the greedy algorithm, but more intelligently
than random sampling.

7 Jumps and Flips

Cleve Moler, the developer of Matlab, discusses a program called travel which tries to solve a version of
the TSP in his article:
https://blogs.mathworks.com/cleve/2018/09/17/usa-traveling-salesman-tour

/s tid=srchtitle tsp 2&doing wp cron=1680823886.0916650295257568359375

Each time it is called, travel starts with a random permutation of the cities. Then, for several thousand
iterations, it tries to reduce the length of the trip by revising the permutation in each of two simple ways.

One scheme is to move one city to another position in the ordering. This example starts with the order [1:7].
It then moves city 4 to follow city 5, so the order becomes [1 2 3 5 4 6 7]. This reduces the length from 9.71
to 7.24.

The second scheme is based on the observation that any time a route crosses itself, the length can be reduced
by reversing the crossed segment. We don’t actually look for crossings, we just try reversing random chunks
of the ordering. This example reverses the [3 4 5] in [1:7] to get [1 2 5 4 3 6 7], thereby reducing the length
from 9.47 to 7.65.

7

Because these changes are made at random, it is just as likely that we start with the picture on the right,
make our modification, and end up with the picture on the left; that is, we can just as easily make things
worse. But the advantage of doing these changes at random is that we avoid having to come up with, and
then express computationally, all the tests that would tell us beforehand when our changes would be helpful.
Sometimes it can be simpler and cheaper to try many changes at random than to carefully work out in
advance what might be a good move.

After trying these random modifications, the program measures the length of the new path, and if it improves
the record for shortest path, it becomes the current candidate. Since our random sampling approach didn’t
do so well, there seems to be no guarantee that this new method will work. The best thing we can do is test
it out on our “fortyeight” example, keeping in mind as a comparison the estimated solution found by the
greedy algorithm.

By starting with 10,000 random permutations, and applying these simple set of alterations, the traveler()

code came up with a tour of length 155. If we plot this tour, it looks very good, except for a path crossing
up near Maine. This suggests that we haven’t found the best solution, but certainly, this looks very close.
If we run traveler several times, we will get different results, and we may drive the distance down further.

No reliable algorithm has been found that can produce exact solutions of the TSP; this means that practical
people have identified algorithms that work pretty well, and theoreticians continue to search for methods
that improve the current algorithms and estimate how far off a given estimate is from the shortest path.
The ultimate goal is a deterministic TSP solver, but as with many problems in combinatorics, this may be
something that mathematics is just not ready for!

8

