
Graph Algorithms

“Graph Algorithms”
http://people.sc.fsu.edu/∼jburkardt/presentations/

asa 2011 graphs.pdf
..........

ISC4221C-01:
Algorithms for Science Applications II

..........
John Burkardt

Department of Scientific Computing
Florida State University

Spring Semester 2011

1 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

2 / 145

OVERVIEW: Who Invented Graphs?

Euler’s Königsberg Bridge Problem (1735)

3 / 145

OVERVIEW: Who Invented Graphs?

Euler’s Drawing Selects the Important Information

4 / 145

OVERVIEW: What is a Graph?

We have a set of points (or nodes or vertices or cities).

A pair of points is called an edge (or link or arc or road), and
might represent some relationship between points.

A graph is a list of edges.

The edge list for the graph of the bridge could be written this way:

{ {A,C}, {A,C}, {A,B}, {A,B}, {A,D}, {C,D}, {B,D} }.

Do we allow repeated edges?
Is {A,C} the same as {C,A}?
Can we have {A,A}?
Do we care about the length of the bridge?

5 / 145

OVERVIEW: How are Graphs Displayed?

The Abstract Form of the Bridge Problem

6 / 145

OVERVIEW: Why are Graphs Useful?

For the bridge problem, drawing the graph allows us to drop all the
unimportant information.

For small problems, the picture of a graph can be a very effective
device for displaying information.

For larger problems, a computer can extract hidden information
from a graph, and there are standard ways of representing a graph
as data.

The idea of a graph arises in many fields; the same mathematical
algorithms can be applied to problems that originally would seem
to have nothing in common.

7 / 145

OVERVIEW: How are Graphs Used

Graphs can be used to organize and analyze a simplified
geometry. For example, how are the US States connected?

8 / 145

OVERVIEW: How are Graphs Used

9 / 145

OVERVIEW: How are Graphs Used

Graphs can be used to exhibit the logical ordering in tasks in a
construction job. This is a PERT chart (Program Evaluation and
Review Technique).

10 / 145

OVERVIEW: How are Graphs Used

11 / 145

OVERVIEW: What is Computable on a Graph?

During this series of lectures on graphs, we will study algorithms to
answer a few common graph problems, including:

1 what points can be reached from a given point?

2 how many different routes are there between two points?

3 what is the shortest route between two points?

4 what is the shortest round trip visiting all points?

5 what is the shortest set of ”roads” possible that leave all
points connected?

12 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

13 / 145

REPRESENT: The SIMPLE Example Graph

How could we store the information for this graph?

14 / 145

REPRESENT: The Edge List

Mathematically, perhaps the simplest representation would be as
an edge list.

Each of the M edges is described by its pairs of nodes.

For this example, we would have:

EdgeList = {{A,B}, {A,C}, {B,C}, {C ,D}}

Does this list adequately represent our graph?
What’s missing?
What ways could we use to improve the representation?
Are there graphs for which this representation is not useful?

15 / 145

REPRESENT: Storing an Edge List

We prefer to draw graphs in which the nodes have labels such as
’A’, ’B’, ’C’ or ’Pittsburgh’ and ’Cincinnati’.

On a computer, it’s easier to work with an edge list in which the
nodes are identified by a numeric index. The edge list for our
simple graph could be stored in MATLAB as:

EdgeList = [

1, 2;

1, 3;

2, 3;

3, 4];

If the original labels were important, we can arrange to store them
in a second array and access them when needed.

16 / 145

REPRESENT: The Adjacency Matrix

We can also represent a graph by the adjacency matrix. If we have
N nodes, the adjacency matrix Adj will be an N by N matrix, and
the (I,J) element is:

Adji ,j =
1, if nodes I and J are connected;
0, otherwise.

Quiz: since we are working with “simple” graphs, what do we
assume about the value of Adji ,i?

Hard question: a different ordering of the nodes will give a
different adjacency matrix for the same graph. Is it possible to
determine when two adjacency matrices describe the same graph?

17 / 145

REPRESENT: The Adjacency Matrix

The adjacency matrix for the SIMPLE graph is:

Adj =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 0
0 0 0 0 0


The edge list for this graph only contained 4 items of information.
Can you see that Adj also really only has 4 items?

18 / 145

REPRESENT: The Adjacency Structure

A sparse graph involves many nodes N, and a few edges per
node. The adjacency matrix is enormous, and mostly zero.

A better way of storing the information for a sparse graph is called
the adjacency structure. It requires the ability to make a list of N
sublists, where the size of the sublists varies.

The sublist for each node gives all its adjacent nodes.

The SIMPLE graph could be represented by this list:

Node Sublist(Node)

1 -> 2, 3;

2 -> 1, 3;

3 -> 1, 2, 4;

4 -> 3;

5 -> emptyset;

19 / 145

REPRESENT: The Adjacency Structure

To implement an adjacency structure, we use MATLAB’s cell
array data type, which is like a matrix or vector, except that the
entries are not numbers but lists, strings, or other quantities.

A = cell(5,1); <-- Set up a list of 5 sublists;

A{1} = [2, 3]; <-- neighbors of node 1;

A{2} = [1, 3]; <-- neighbors of node 2;

A{3} = [1, 2, 4];<-- neighbors of node 3;

A{4} = [3]; <-- neighbors of node 4;

A{5} = []; <-- neighbors of node 5;

length(A{1}) <-- returns 2; Count node 1 neighbors.

A{1}(2) <-- returns 3; Neighbor 2 of node 1.

20 / 145

REPRESENT: The Incidence Matrix

The incidence matrix is a way of representing a graph that
includes information about both the node and the edges.

Now we assume we have N nodes and M edges, and that both the
nodes and the edges have been numbered.

The I-th row of the incidence matrix describes the I-th edge. It
indicates which two nodes are joined by that edge.

The J-th column of the incidence matrix describes the J-th node.
It indicates which edges touch that node.

For our SIMPLE graph, we have:

Inc =


A B C D E

AB : 1 1 0 0 0
AC : 1 0 1 0 0
BC : 0 1 1 0 0
CD : 0 0 1 1 0


21 / 145

REPRESENT: An Adjacency Function

For some problems, it might be natural to use an adjacency
function. In other words, instead of having an explicit table of 0’s
and 1’s, we provide a function adjacent(i,j) which is given the
indices or other information about the two nodes we are interested
in, and returns the adjacency status of 0 or 1.

This might seem a strange situation, except that there are cases
where the adjacency relationship can be determined naturally in
this way.

Suppose we have a table of four letter words, and we are interested
in the puzzle in which we try to change one word into another by
altering one letter at a time, with the requirement that after each
single letter change, the result is still a legal word.

22 / 145

REPRESENT: An Adjacency Function

We might try, for instance, to convert head to tail:

head

heal

teal

tell

tall

tail

If we have a list of four letter words, then we could search for legal
moves by asking questions such as adjacent(’head’,’heal’) which
would return 1 while adjacent(’head’,’foot’) returns 0. In this
case, the input items are computed to be adjacent if they differ in
exactly one spot.

You should see that for this case, an adjacency function is an
extremely compact way of determining the adjacency information.
A more realistic example of this kind of adjacency computation
might involve biological sequence data. 23 / 145

REPRESENT: The GRF format

When we think about a graph, we really think of it as a drawing.

Often a graph can be drawn in a way that keeps edges from
crossing, and that looks clean and logical.

When the presentation of the graph is important, the GRF format
can be used.

Each line of the file looks like this:

i x y n1 n2 ... nk

where

i is the index of the node (1 to N);

x y are the coordinates of the point where the node is drawn;

n1, n2, ..., nk are the nodes that connect to this node.

24 / 145

REPRESENT: The GRF format

A GRF file for the SIMPLE graph could look like this:

1 2.0 1.0 2 3

2 1.0 0.0 1 3

3 0.0 2.0 1 2 4

4 3.0 3.0 3

5 3.0 0.0

25 / 145

REPRESENT: GRF DISPLAY can display the GRF format

The MATLAB program grf display can be used to display a
graph that has been stored in the GRF format.

If the file is called simple.grf, then you could display it with the
command

grf display simple

26 / 145

REPRESENT: GRF DISPLAY shows the Simple Graph

Here is how grf display would display the simple graph:

27 / 145

REPRESENT: The Degree of a Node

The degree of a node is the number of edges that begin there.

For any representation, we can determine the degree of a node:

edge list, look at every edge, and count the number of times
the node occurs;

adjacency matrix, find either the row or column corresponding
to the node, and count the number of 1’s;

adjacency structure, count the number of entries in the sublist
for the node;

incidence matrix, find the column corresponding to the node,
and count the 1’s;

GRF file, find the line of the file corresponding to the node
and count the neighbors;

28 / 145

REPRESENT: Summary

The edge list is simple to implement and doesn’t waste space;
however, the data is not organized; to find neighbors of a node,
you must look at every item.

The adjacency matrix is simple to implement, and makes it easy to
find the neighbors of a node; it does waste a lot of space.

The adjacency structure is a little harder to set up, but makes it
very easy to list the neighbors of any node, and doesn’t waste
space. However, if the adjacency structure is defined as a
MATLAB cell array, you can’t use load and save to write it to a
file or read it back.

(The adjacency structure can be set up as a list and a pointer
vector, in which case load and save can be used...)

29 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

30 / 145

CONNECTIONS: The Global View

When we describe a graph, for instance by an edge list, we are
stating which pairs of nodes are directly connected by an edge.
This is all we need to say in order to define the graph.

Edges are local connections; they don’t go very far. But when we
draw the graph, we can see global information, that is, “the big
picture”. One of the most important global properties that a graph
can have involves connectivity or connectedness.

This involves questions such as:

Can we travel from node A to node Z?

Can we travel from any node to any other node?

What is the quickest way to get from G to W?

To answer these questions, we seek algorithms to turn local
information into global knowledge.

31 / 145

CONNECTIONS: Kinds of Graphs

A loop is an edge that joins a node to itself.

If there may be more than one edge between two nodes, we have a
multi-graph (Example: the Euler bridge graph).

If each edge has a length, or some other quantity associated with
it, we have a weighted graph.

Some of our later example graphs will include edge lengths; that
will allow us to find shortest driving routes, and so on.

If edges have “direction”, that is, {A,C} is not the same thing as
{C,A}, then we say we have a directed graph, or “digraph”.

In many cases, the model you are looking at requires the edges to
have direction. A graph of the traffic pattern of downtown
Tallahassee would require many one-way streets. If we have time,
we will look at some interesting digraph problems.

32 / 145

CONNECTIONS: Simple Graphs, Adjacent Nodes

A graph that is not directed, has no multiple edges, has no loops,
and no edge weights is a simple graph.

In a simple graph, there either is or isn’t exactly one edge between
any two distinct nodes, and that’s all we can say.

In a simple graph, edges don’t have “direction”, so we are free to
describe an edge as a set, {A,B} or {B,A}. Either form means the
same thing.

If there is an edge between two nodes, we say the nodes are
adjacent (that is, directly touching).

33 / 145

CONNECTIONS: Walks and Paths

If we think about edges as connecting pairs of nodes, then even if
two nodes are not adjacent, it might be possible to reach one node
from the other by taking one edge, then another and another.

If the edges make it possible, we can describe the process of
moving from one node to the other in two ways:

as a node list, simply listing the nodes in the order we visited
them, including the start and finish;

as an edge list, listing the edges we used, in order.

A list of edges that describes a journey has a special property, of
course. Each consecutive pair of edges must have a node in
common, since one edge got us to that node, and one edge took
us away from it.

34 / 145

CONNECTIONS: Walks and Paths

We define a walk from A to B as node list with the properties that
the first element is A, the last element is B, and every consecutive
pair of nodes are adjacent.

An example of a walk from A to D on our simple graph might be
A-C-B-C-D.

QUIZ: Show there are an infinitely many walks from A to D!

We define a path as a walk in which no edge is used more than
once. Thus, our walk example is not a path.

QUIZ: Exactly how many paths are there from A to D?

For our work, paths will be much more important and interesting
than walks!

35 / 145

CONNECTIONS: Connected Nodes and Graphs

If there is a path from node A to node B, then we say the nodes
are connected.

If no node is connected to some node A, we say A is isolated.

If every pair of points in a graph are connected, then we say we
have a connected graph; otherwise, it is disconnected.

If a graph is not connected, the nodes and edges can be organized
into “subgraphs”. Every node in the first subgraph can reach the
other nodes in that subgraph, but can’t reach nodes in any other
subgraph. The subgraphs are like islands.

These subgraphs are the connected components of the graph.

36 / 145

CONNECTIONS: Computation?

Let us assume we are working with a graph G which is simple (no
multiple edges, no edge directions, no special edge weights).

Suppose we have the picture of the graph, and that there are nodes
labeled A and B, and that you have a red pencil and an eraser.

How would you try to answer the following question:

Can you find and draw a path from A and B?

If the graph is really complicated, is there a “sure-fire” way that
would be guaranteed to always work?

37 / 145

CONNECTIONS: Computation?

Now suppose that the graph has been stored in the computer, and
we are given the indices of two nodes, A and B.

1 One task is simply to report whether there is a path.

2 A second task would be to actually report what that path is!

Is there a computational algorithm that can find a path from A
and B if there is one?

This might be related to the “sure-fire” way we talked about when
we were solving the problem using a picture of the graph and a red
pencil...

38 / 145

CONNECTIONS: The DISCONNECTED Example Graph

Can we compute a path from A to E?

Can we compute the number of “connected components”, that is,
pieces of this graph?

39 / 145

CONNECTIONS: The Connection Algorithm

The Connection Algorithm seeks a path from a node A to another
node, say, B. All we have to work with is the list of edges.

We will divide the nodes into three sets: used, new, untouched.

We begin with:

used = ∅
new = { A }
untouched = { all nodes but A}

40 / 145

CONNECTIONS: The Connection Algorithm

We now carry out the following steps:

1 If new is empty, we failed. Exit.

2 Move one item from new into used, and call it S.
3 For each edge which uses S:

Call the other node in the edge T;
If T is equal to B, we succeeded. Exit.
Otherwise, if T was untouched, move it into new.

4 Go back to step 1.

Do this now:
Use the Connection Algorithm to seek a path from A to E.
How about a path from H to A?

41 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

42 / 145

MATLAB: Implementing the Connection Algorithm

We can see things, such as a path, that are hard to turn into an
algorithm.

It turns out that we even if we can write up an algorithm, it can be
harder still to turn that algorithm into an implementation, that is,
a complete program in some computer language that carries out
the algorithm.

Since the Connection Algorithm seems reasonably simple, let’s take
some time to think about the choices we have when writing it up
in MATLAB.

43 / 145

MATLAB: Problem Data

Let’s call the number of nodes N; for the DISCONNECTED
example, N=8;

Represent the graph by an edge list called edge:

1 4

1 6

2 3

3 8

4 5

4 6

The edge array has NEDGES rows and 2 columns. We can get
the value of NEDGES by the command

nedges = size (edge, 2)

where “2” means we’re asking for the second dimension.

That’s all the data we have to start with.
44 / 145

MATLAB: Working with Sets

Our algorithm requires us to define and use some sets.

In MATLAB, we could think of the sets used, new and untouched
simply as vectors of length N. The T-th value in each vector is 1 if
T is in that set, and 0 otherwise.

A node should only be in one set. So if T is in new, we must make
sure that

used(t) = 0;

new(t) = 1;

untouched(t) = 0;

45 / 145

MATLAB: Modifying Sets

For the Connection Algorithm, we start with all the nodes in the
untouched, set, so our MATLAB code begins with:

used = zeros(1,n);

new = zeros(1,n);

untouched = ones(1,n);

Now we pick any entry of untouched as our starting point and
move it into new. Let’s assume that’s node F, which is index 6:

untouched(6) = 0; <-- Node 6 moves out of untouched

new(6) = 1; <-- and into our work area;

46 / 145

MATLAB: Step 1: Initialize

So here’s what our sets look like as we begin the program:

Label: | A B C D E F G H

Index: | 1 2 3 4 5 6 7 8

----------+-----------------------

UNTOUCHED:| 1 1 1 1 1 0 1 1

NEW: | 0 0 0 0 0 1 0 0

USED: | 0 0 0 0 0 0 0 0

47 / 145

MATLAB: Step 2: Select From New

Step 2 moves one item from new to used and calls it S.

s = 0;

for i = 1 : n

if (new(i) ~= 0)

s = i;

break

end

end

new(s) = 0;

used(s) = 1;

The find command can also locate S:

i = find (new ~= 0)

s = i(1);

48 / 145

MATLAB: Step 3: Seek Untouched Neighbors

for j = 1 : nedges

if (edge(1,j) == s)

t = edge(2,j);

elseif (edge(2,j) == s)

t = edge(1,j);

else

t = 0;

end

if (t ~= 0)

if (untouched(t))

untouched(t) = 0;

new(t) = 1;

end

end

end

49 / 145

MATLAB: After Step 3

After step 3, we’ve put more stuff into new:

Label: | A B C D E F G H

Index: | 1 2 3 4 5 6 7 8

----------+-----------------------

UNTOUCHED:| 0 1 1 0 1 0 1 1

NEW: | 1 0 0 1 0 0 0 0

USED: | 0 0 0 0 0 1 0 0

and node F has retired into used, and we are ready to go back to
step 1 and seek untouched neighbors of node A or D.

50 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

51 / 145

COMPONENTS: Success From Failure

Our Connection Algorithm can fail if there is no path between the
nodes we specified. The algorithm even realizes that it has failed,
when it runs out of nodes in the new set.

If our algorithm fails, we know that the graph must have at least
two components.

Quiz: If the algorithm doesn’t fail, is there just one component?

In the spirit of “If at first you don’t succeed, fail, fail again!”, we
can actually use the failures of the connection algorithm to tell us
exactly how many connected components there are, and we can
even list the nodes that belong to each one.

How can we do this?

52 / 145

COMPONENTS: Finding One Connected Component

Notice that our Connection Algorithm is gradually discovering
every node that can be reached from the starting node. It actually
usually stops a little early, that is, as soon as it finds the special
target node we called B.

Suppose we remove the line that says:
“if you reach B, you have succeeded.”

Then the algorithm will run and run until every node that could be
reached from A has been checked and tossed into the used group.

That set is exactly one connected component of the graph!

53 / 145

COMPONENTS: Finding Other Connected Components

If the graph was connected, then we’re actually done.

How can we tell whether we are done?

Assuming we aren’t done, how can we find another component?

54 / 145

COMPONENTS: The Connected Component Algorithm

Initialize used and new to ∅.
Initialize untouched to all the nodes.

Set the component count to c = 0;

1 If untouched is empty, successful exit.

2 Move one node from untouched to new.

3 c = c + 1;

4 Call the modified Connection Algorithm;

5 Go back to step 1.

At the end, c is the number of components we found.

The modified Connection Algorithm can even keep track of which
component each node belongs to.

55 / 145

COMPONENTS: The Modified Connection Algorithm

Assume c and the sets used, new, untouched have been assigned.

1 If new is empty, exit.

2 Remove one item from new, and call it S.
3 For each edge which uses S:

Call the other node in the edge T;
If T was untouched, move it into new.

4 component(S)=c;

5 Move S into used;

6 Go back to step 1.

56 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

57 / 145

ADJACENCY: The Adjacency Matrix

We said that two points A and B are adjacent if there is an edge
that directly connects them. For a simple graph, the adjacency
information contains a complete description of the graph. For each
pair of nodes, we need a “yes” or “no” answer.

Recall our definition of the the adjacency matrix. If we have N
nodes, the adjacency matrix Adj will be an N by N matrix, and
the (I,J) element is:

Adji ,j =
1, if nodes I and J are connected;
0, otherwise.

QUIZ: What property does this matrix have?
(Hint: what is the transpose of this matrix?)

QUIZ: If we changed this property, what kind of graph have we
created?

58 / 145

ADJACENCY: Computing Adjacency from a Picture

What is the adjacency matrix for the SIMPLE graph?
How can we tell that node E is completely disconnected?

59 / 145

ADJACENCY: Using the Matrix

The adjacency matrix is:

Adj =


0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 0
0 0 0 0 0


Recall that the same graph can be represented by this edge list

1 2

1 3

2 3

3 4

Do you see there are really only 4 pieces of information in Adj?

60 / 145

ADJACENCY: Computing Adjacency from a Picture

Since the adjacency matrix Adj is a matrix, it’s natural to
wonder whether you can do numerical operations with it.

What would it mean to multiply this matrix times a vector? Let’s
take the column vector v = [0, 1, 0, 0, 0]′ = [0, 1, 0, 0, 0]T for
instance. Computing Adj ∗ v we get [1,0,1,0,0]’. That’s just
column 2 of Adj.

We can interpret the result as follows. Setting v0 = [0, 1, 0, 0, 0]′

means we are starting at node 2 (B). Multiplying by the matrix
Adj returns us Adj ∗ v0 = v1 = [1, 0, 1, 0, 0]′; that is, it says we
can move to node 1 or 3 in one step.

61 / 145

ADJACENCY: A “MATLAB Moment”

When I want to talk about the column vector

| 0 |

| 1 |

v = | 0 |

| 0 |

| 0 |

I wrote, instead, v = [0,1,0,0,0]’, for convenience. There are
different conventions in MATLAB and mathematics for indicating
a transpose. Here are three ways of writing that vector:

v = [0,1,0,0,0]’; <-- MATLAB transpose operator;

v = [0;1;0;0;0]; <-- semicolons end a row.

v = [0,1,0,0,0]^T <-- Mathematical format;

62 / 145

ADJACENCY: Computing Adjacency from a Picture

Another multiplication gets us Adj ∗ v1 = v2 = [1, 2, 1, 1, 0].

Let’s try to explain the second entry, which is 2. Because this is in
the second positions, it’s talking about node 2.

After one step, we were at node 1 or 3. Taking a step from node 1
can get us to 2 or 3. Or, from 3, we can get to 1, 2 or 4:

1 2 3 4 5

-------------------------+--------------

From node 1, can move to:| - 1 1 - -

From node 3, can move to:| 1 1 - 1 -

-------------------------+---------------

Number of ways to reach: | 1 2 1 1 0

So this is how many different ways to start at node 2, take 2 steps,
and end up at node 2, namely B-A-B and B-C-B.

63 / 145

ADJACENCY: Counting Paths From A Starting Point

Let the vector v be zero except for a 1 in the entry
corresponding to some node A in the graph G, and let Adj be the
adjacency matrix for G.

Then the vector:

Adj ∗ v counts walks of length 1 from A to each node;

Adj2 ∗ v counts walks of length 2 from A;

Adj3 ∗ v counts walks of length 3, and so on.

Recall that a walk from A to B is absolutely any sequence of nodes
which are joined by edges and which begin at A and end at B.

Such a walk may use an edge more than once, pass through any
node more than once, and in fact, pass through B several times.

64 / 145

ADJACENCY: Counting Paths From Any Starting Point

Let Adj be the adjacency matrix for a graph G.

Then the matrix:

Adji ,j counts walks of length 1 from node I to node J;

Adj2i ,j counts walks of length 2,

Adj3i ,j counts walks of length 3, and so on.

QUIZ: How can we determine whether the graph G is connected?

1 If G is connected, what must be true for any pair of nodes?

2 What is the maximum length of a path between two nodes?

3 When you count walks, you are including paths.

65 / 145

ADJACENCY: What about Paths Instead?

As we keep multiplying the adjacency matrix, the entries in the
result vector keep growing. But this is, in a sense, way too much
information. On a graph with 10 nodes, discovering a walk of 100
steps is not difficult, not interesting, and probably not so useful.

What might be more interesting is to figure out a corresponding
procedure that works out the number of paths from one node to
another. This is harder (because the adjacency matrix trick doesn’t
simply hand us the answer) but more interesting, because paths
are more likely to be what we are looking for, and because we can
guarantee that the procedure stops, for sure, after at most N-1
steps. (...and that’s because???)

What sort of algorithm could we sketch that might handle this
problem? (We will discuss this for a few minutes in class.)

66 / 145

ADJACENCY: California Population Exchange

RED: Population movement 1955:1960
BLUE: Population movement 1995:2000

67 / 145

ADJACENCY: Modeling Transitions

Each year, 1/10 of the people outside of California move in;
at the same time, 2/10 of the people in California move out!

This may not sound like a graph problem, but let’s think about
whether we could get somewhere anyway.

We do have places (California, and not-California) and connections
(move from one place to the other.) Now the connections have a
direction. C − > N means move from California to Noncalifornia,
but N − > C, means I move the other way.

Moreover, if some people move out of California, some people stay.
So if we think about the links as actions, then we have to add
loops for this model, that is, a link that goes from C to C, and
another that goes from N to N.

Finally, we have the probabilities, which we use to label the links.

Do this now: Draw the graph for this model.
68 / 145

ADJACENCY: Modeling Transitions

Suppose we create a new adjacency matrix, which models this
graph. Instead of a 1 or a 0, we put the probability of the event
that the link represents.

C N

C : 0.8 0.1

N : 0.2 0.9

This means we have to agree on how to “read” the graph. So the
rows will be where we move TO, and the columns will be where we
move FROM. Assuming California is the first row and column,
then A1,2 is the probability that I just moved this year TO
California FROM Noncalifornia.

Now the US population is about 300 million, and California’s is
about 37 million. That’s too hard, so let’s call it 40 million! Now
let’s say that the simple model we have built is exactly what
happens, and let’s forget about births and deaths. Every year,
1/10 move in, 2/10 move out. 69 / 145

ADJACENCY: Modeling Transitions

Just like with Euler’s bridge problem, the first time you see a
problem like this, you might say, ”This is not math. It has numbers
in it, but it is not mathematics!” We will see a little of the math
today, and actually this problem opens up a huge world of
simulation, linear algebra, probability, Markov chains, and on and
on!

So what happens if we let A be the adjacency matrix...no, let’s call
this the transition matrix!, and let v be the population vector [40,
260], and compute A*v?

A * v = 0.8 * 40 + 0.1 * 260 = 58

= 0.2 * 40 + 0.9 * 260 = 242

Notice one good thing: we still have 300 million people! Also,
California just got very crowded in one year!

70 / 145

ADJACENCY: Modeling Transitions

Since this is a model of yearly change, let’s see what happens
over time. Presumably, everyone will end up living in California!

So what happens if we let A be the adjacency matrix...no, let’s call
this the transition matrix!, and let v be the population vector [40,
260], and compute A*v?

40 58 71 79 86 90 93 95 97 98 98 99 ...

260 242 229 221 214 210 207 205 203 202 202 201 ...

Wait a minute, this looks like math! And I think we can guess
what’s going to happen. Can you also guess why? Do you know
the name for a vector v with the property that v = A*v?

71 / 145

ADJACENCY: Summary

The simple idea of the adjacency matrix seemed almost magical
when it was able to produce the number of walks from any node to
any other.

With a little thought, we could also figure out a procedure for
getting the number of paths, rather than walks, which might be
more useful.

But, to give you just a hint of why this stuff is actually so
interesting, we were able to make a complicated directed graph
with edge weights and loops, which modeled (even if it’s an
inaccurate model) a real situation, and which even ended up
turning into some math for us!

72 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

73 / 145

DFS: A Way of Checking All Nodes

In our search for connections and components and paths, we
struggled to find a way to visit every node of a graph. The
long-range connections of a graph are not obvious from the data,
but this is extremely useful information to obtain.

One standard technique for visiting every node of a graph is known
as depth-first search; its name indicates that in this process, we
follow one branch of possibilities all the way to its end, while
remembering all the other possibilities that we must come back
and examine later.

One version of the search uses recursion: the procedure calls itself.
We will look at an equivalent version that uses a stack. For us, a
stack is a list of unfinished work; the last item placed on the stack
is the first thing we will take off.

74 / 145

DFS: Visiting a Museum

Consider the problem of visiting every room of this museum,
which we enter at room Q:

75 / 145

DFS: Visiting a Museum

Assuming perfect memory, we could go as far as possible in new
territory, then back up to the last unexplored room.

Q - use K, save P

K - use E, save L

E - use D, save F

D - dead end, backup to E

E - use F

F - dead end, backup to E

E - nothing left, backup to K

K - use L

L - use R

R - dead end, backup to L

L - nothing left, backup to K

K - nothing left, backup to Q

Q - use P

...and so on...
76 / 145

DFS: The Algorithm in Words

Our search begins by choosing a starting node. That node has
neighbors, and we must visit them all but we can only do one at a
time, so we choose one neighbor node to visit, move there, and
“remember” the other nodes by putting them onto the stack.

The new node has neighbors. One of its neighbors was the starting
point (that’s how we got here) and we don’t want to visit it again.
So we will need to remember which nodes we have visited already.
Now we look at the unvisited neighbors of this node, pick one, and
put the rest on the stack.

We continue doing this until we reach a node that has no unvisited
neighbors. We have gone to maximum ”depth” on this path.

77 / 145

DFS: The Algorithm in Words

What next? Simply get the next node off the stack. Now we
might actually have visited this node since we put it on the stack;
if so, we keep drawing the next item from the stack until we find
an unvisited node, and start wandering again.

If the stack becomes empty, and we know the graph is connected,
we are done.

If the graph is not connected, or we don’t know, we simply check
for any unvisited node, and restart the algorithm from that point
to find some more paths.

78 / 145

DFS: The Algorithm in Practice

Consider the graph for our museum:

79 / 145

DFS: The Algorithm in Pseudocode

INITIALIZE

step = 0; visited(1:N) = 0;

TAKE SOMETHING OFF THE STACK:

do

if (step == 0) then room = Q

elseif (nothing left on stack) then we’re done

else

room = last stack item

if (room not yet visited) then exit

end

end

PUT THINGS ON THE STACK

step = step + 1; visited(room) = step;

Add each unvisited neighbor of room to the stack. 80 / 145

DFS: The INITIALIZE Step

step = 0;

visited(1:n) = 0;

stack_num = 0;

stack(1:n) = 0;

while (1)

%

% Find an unvisited room.

%

code to take something off the stack
%

% Visit new room, look for unvisited neighbors.

%

code to put neighbors on the stack

end 81 / 145

DFS: FIND UNIVISITED ROOM Step

% Find an unvisited room.

%

while (1)

if (step == 0)

room = first; (first call)

break

elseif (stack_num == 0)

return (we are done)

else

room = stack(stack_num);

stack_num = stack_num - 1;

if (visited(room) == 0)

break;

end

end

end 82 / 145

DFS: VISIT NEW ROOM Step

% Visit new room, look for unvisited neighbors.

% Use adjacency structure (cell array).

%

step = step + 1;

visited(room) = step; (we have been here now.)

neighbors = adj{room}; (extract neighbor list)

neighbor_num = length (neighbors);

for i = 1 : neighbor_num

room2 = neighbors(i);

if (visited(room2) == 0)

stack_num = stack_num + 1;

stack(stack_num) = room2;

end

end 83 / 145

DFS: VISIT NEW ROOM Step

% Visit new room, look for unvisited neighbors.

% Use adjacency list + adjacency pointer.

%

step = step + 1;

visited(room) = step; (we have been here now.)

for i = adj_pointer(room) : adj_pointer(room+1)-1

room2 = adj_list(i);

if (visited(room2) == 0)

stack_num = stack_num + 1;

stack(stack_num) = room2;

end

end

84 / 145

DFS: Output

Step Room Stack Step Room Stack

---- ---- -------- ---- ---- -----

1 Q: K P 11: B: K C

2 P: K O 12 C: K

3 O: K I 13 K: E L

4 I: K H J 14 L: E R

5 J: K H 15 R: E

6 H: K B N 16 E: D F

7 N: K B M 17 F: D

8 M: K B G 18 D: empty!

9 G: K B A

10 A: K B

85 / 145

DFS: Summary

We have simply used DFS to visit each node. It should be clear
that this is a powerful way to process the information in a graph.

If we did not know the graph was connected, we would have to
count the number of nodes we found, and if necessary, restart the
algorithm by picking an unvisited node at random.

The edges used in the search form a “spanning tree” of the graph;
that is, if we only kept those edges, we’d have just enough to keep
the graph connected. In our example, there were no excess edges
(the graph was already a “tree”).

The breadth first search is a related method. It starts at a given
node, and visits all the nodes that are just 1 edge away, then
unvisited nodes that are just 2 edges away, and so on.

86 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

87 / 145

WEIGHT: Measuring the Edges

In simple graphs, an edge exists or doesn’t, and that’s the end.

This idea of an edge is a little too restricted for some of the real
situations we might like to model.

Suppose, for example, our nodes represented cities, and the edges
represented direct highway links. A graph could be used to plan a
trip, but only if we also knew the mileage of each possible highway
section.

We can create a new kind of graph which includes a number
associated with each edge. Usually, this number is positive, or at
least nonnegative. In any case, if we start with a simple graph and
assign a length, or weight, or some other numeric value to each
edge, we get an edge-weighted graph or just weighted graph.

88 / 145

WEIGHT: The MST (Minimum Spanning Tree) Example

89 / 145

WEIGHT: Questions About a Weighted Graph

If we have a situation that can be modeled by a weighted graph,
some new questions can be posed, and answered:

What is the shortest path from A to H?

What is the shortest set of edges we could select that would
still keep all cities connected?

What is the shortest round trip that visits all the cities?

90 / 145

WEIGHT: Questions About a Weighted Graph

These particular questions are so common that they have been
given names:

The shortest path problem;

The minimum spanning tree;

The traveling salesman problem.

For each question, there are algorithms available.

The last problem is much, much harder than the others.

91 / 145

WEIGHT: The Edge Length Matrix

One way to represent a weighted graph is by the edge length
matrix. If we have N nodes, the edge length matrix Length will be
an N by N matrix, and the (I,J) element is:

Lengthi ,j =

{
length of the edge between nodes I and J;
∞, if nodes I and J are not directly connected.

In MATLAB, the value ∞ is represented by Inf, and we are allowed
to make comparisons using this value.

92 / 145

WEIGHT: The Edge Length Matrix

The edge length matrix for our MST graph is:

Length =



0 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 0 17 16 ∞ ∞ ∞ ∞ ∞ ∞
∞ 17 0 8 ∞ ∞ ∞ ∞ 18 ∞
∞ 16 8 0 11 ∞ ∞ ∞ 4 ∞
∞ ∞ ∞ 11 0 1 6 5 10 ∞
2 ∞ ∞ ∞ 1 0 7 ∞ ∞ ∞
∞ ∞ ∞ ∞ 6 7 0 15 ∞ ∞
∞ ∞ ∞ ∞ 5 ∞ 15 0 12 13
∞ ∞ 18 4 10 ∞ ∞ 12 0 9
∞ ∞ ∞ ∞ ∞ ∞ ∞ 13 9 0



93 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

94 / 145

SHORT: What is the Length of a Path?

Recall that a path P from node A to node B is a sequence of
edges of the form {A,J}, {J,W}, {W,K}, {K,B}, (for instance),
with the property that the first edge includes A, the last edge
includes B, and every consecutive pair of edges has a node in
common, with no nodes repeated.

If we have a weighted graph, then the Length matrix records the
the length of every edge.

Therefore, given a path P, we can define the distance traveled by a
path P as the sum of the lengths of the edges it uses.

95 / 145

SHORT: The Shortest Path Problem

Now suppose we are given a weighted graph W.

The shortest path problem requires us to determine the distance of
the shortest path between a particular pair of nodes A and B.

The all pairs shortest path problem requires us to solve the
shortest path problem for all pairs of nodes.

96 / 145

SHORT: A Brute Force Approach

How would we design a brute force approach?

We would generate all possible paths, always “remembering” the
shortest one we have seen so far.

Usually, one advantage of a brute force method is that it doesn’t
require a lot of thought. However, do you have any idea how to
generate all possible paths from A to B?

In a shortest path, no edge is used twice, no node visited twice.
QUIZ: What assumption guarantees these facts?

A shortest path will never have more than N-1 edges.
QUIZ: Explain why, please!

97 / 145

SHORT: Generating Paths from one node to another

“Depth first search” can generate all paths from one node to
another. Let’s get all paths from A to B in the weighted graph
example.

0: Start with a list L of just one partial path, namely A.

1: If there are no partial paths left in L, we are done.

2: Remove one partial path from L, and create new partial paths
by taking one more step to a new node.

2a: If no steps were possible, go back to step 1.

2b: If the new step took you to node B, then this is a complete
path, so print it.

2c: Add all remaining partial paths back to L, and go to step 1.

98 / 145

SHORT: Generating Paths from one node to another

A? -> AF? -> AFG? -> AFGE? ->AFGEH? -> AFGEHJ? -> ...

AB AFE? AFGH? AFGEI? AFGEHI?

AFGED?

... --> AFGEGI? -> AFGEHJID? -> AFGEHJIDB

AFGEHJIC? AFGEHJIDC? -> AFGEHJIDCB

At this point, we’ve generated three paths from A to B, but we
still have six more partial paths to work through.

The point is that this is a systematic approach to generating all
possible paths - in other words, a computer can do it.

QUIZ: Prove the 1-step path from A to B is the shortest one!

99 / 145

SHORT: Algorithm Classification

The ”depth first” search that we employed for the shortest path
problem is an example of the decrease and conquer technique.

In order to find the shortest path from A to B, we needed to find
all paths from A to B. We decrease the problem size by looking for
all paths from a neighbor of A, to B. On the second step, we look
for all paths from a neighbor of a neighbor of A, to B. On each
step, as we add a node to our path, we are reducing the problem
size, that is, the number of remaining nodes we must consider.

100 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

101 / 145

DIJKSTRA: An Algorithm For the Shortest Path

Edsger Dijkstra is one of the founders of computer science. We
will examine his solution to the shortest path problem.

The idea is to get the answer in a way that is simple to program,
efficient to run, and provably correct.

Our input is a pair of nodes, A and B, and an edge length matrix
Length, which will be ∞ for nodes with no direct connection.

Our result is the value Dist(B), the shortest distance from A to B,
or, if there is no path, the value ∞.

102 / 145

DIJKSTRA: The Algorithm

1 For all nodes C, initialize:
Dist(C) = ∞,
CONNECT(C) = 0.
Then set P = A,
Dist(A) = 0.

2 Connect node P, that is, CONNECT(P) = 1.

3 For every unconnected node C with a finite edge (C,P):
Dist(C) = min (Dist(C), Dist(P) + Length(C,P))

4 If there are no more unconnected nodes with a finite value of
Dist(), we are done. There is no path to B.

5 Set P to the “closest” unconnected node, that is, the node
with minimum value of Dist.

6 If P is B, we are done, and Dist(B) contains the shortest
distance from A to B.

7 Go to step 2.

103 / 145

DIJKSTRA: Shortest Paths to ALL Other Nodes

Suppose that we want the shortest paths from A to every node.

We can modify Dijkstra’s algorithm to solve this problem as well.

Replace steps 4, 5 and 6 of the previous version by:

4 If there are no more unconnected nodes with a finite value of
Dist(), we are done.

5 Set P to the “closest” unconnected node, that is, the node
with minimum value of Dist.

6 Go to step 2.

104 / 145

DIJKSTRA: The DIJKSTRA Example Graph

105 / 145

DIJKSTRA: A Worked Example

-----Connect---- --------Dist---------

Step P A B C D E F A B C D E F

---- - ---------------- ---------------------

1 A 1 - - - - - 0 40 15 oo oo oo

2 C 1 - 1 - - - 0 35 15 115 oo oo

3 B 1 1 1 - - - 0 35 15 45 65 41

4 F 1 1 1 - - 1 0 35 15 45 49 41

5 D 1 1 1 1 - 1 0 35 15 45 49 41

6 E 1 1 1 1 1 1 0 35 15 45 49 41

106 / 145

DIJKSTRA: Algorithm Classification

Dijkstra’s algorithm for the shortest path problem can be
classified as a greedy algorithm.

At each step, we simply take add the edge that looks best (shortest
length) without any regard to long term strategy. The only checks
we make are that the new edge connects an ”old” node to a ”new”
one, and has the lowest value of D among all such edges.

The advantage of a greedy algorithm is that the decision process is
simple and efficient.

107 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

108 / 145

SPAN: What is a Tree?

A tree is:

a simple graph;

and connected;

and if any edge is removed from the tree, the remaining graph
becomes disconnected.

A cycle in a graph is a path (of distinct edges) which begins and
ends at the same node.

QUIZ: Prove that in a tree, there are no cycles.

109 / 145

SPAN: What is a Spanning Tree

A spanning tree of a connected graph G is a tree which is formed
by deleting all edges of G that are not needed to keep the
remaining graph connected.

Usually, there are many different spanning trees for a given graph.

However, if there are N nodes in the graph, a spanning tree will
always have exactly N-1 edges.

110 / 145

SPAN: A Spanning Tree for the MST Graph

The length of this spanning tree is 66 units.

111 / 145

SPAN: The Minimal Spanning Tree

The minimal spanning tree of a connected weighted graph W is
the spanning tree with the property that the the total edge length
is the smallest possible value.

Given a weighted graph W, a minimal spanning tree has 3 tasks:

1 it must eliminate all but N-1 edges;

2 the remaining edges must keep all the nodes connected;

3 the total of the lengths of these edges must be the lowest
possible value.

112 / 145

SPAN: Kruskal’s Algorithm

One approach to the minimal spanning tree problem is known as
Kruskal’s algorithm. It is very easy to describe.

Our tree will be described by T , a list of some of the edges of W.
(We actually know that exactly N-1 edges will be needed.)

At each step, we add one new edge to T . The edge we choose is
the shortest unused edge that does not create a cycle. (Remember
what a cycle is?)

113 / 145

SPAN: Kruskal’s Algorithm Worked Out

AB AF BC BD CD CI DE DI EF EG EH EI FG GH HI HJ IJ Sum

3 2 17 16 8 18 11 4 1 6 5 10 7 15 12 13 9

1 EF 1

2 AF EF 3

3 AB AF EF 6

4 AB AF DI EF 10

5 AB AF DI EF EH 15

6 AB AF DI EF EG EH 21

7 AB AF CD DI EF EG EH xx 29

8 AB AF CD DI EF EG EH IJ 38

9 AB AF CD DI EF EG EH EI IJ 48

114 / 145

SPAN: The Minimal Spanning Tree for the MST Graph

The length of the minimal spanning tree is 48 units.

115 / 145

SPAN: Pseudocode for Kruskal’s Algorithm

Sort the list of edges E by length, smallest first.

There are NE edges.

T = {}; NT = 0;

for i = 1 to NE

if (edge E(i) does not add a cycle to T)

T = T + E(i);
NT = NT + 1;

if (NT == N - 1)

done;

end

end

end

116 / 145

SPAN: Checking for a Cycle

How can we check whether edge E(i) adds a cycle to T ?

E(i) is a pair of nodes {A,B}. E(i) adds a cycle to T if, and only
if, both nodes A and B already occur somewhere in the set T .

In our worked example, we considered adding edge {F,G}, but
rejected it because at that point the list of edges was { {A,B},
{A,F}, {D,I}, {E,F}, {E,G}, {E,H} }.

That is, both nodes F and G occurred in the list.

So we moved on to the next longer edge, {C,D}.
QUIZ: why was edge {C,D} acceptable?

117 / 145

SPAN: Algorithm Classification

Kruskal’s algorithm for the minimal spanning tree problem can
be classified as a greedy algorithm.

At each step, we simply take add the edge that looks best
(shortest length) without any regard to long term strategy. The
only check we make is that the new edge can’t add a loop.

118 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

119 / 145

PERM: Introduction

Before we look at the traveling salesman problem, we must first
learn a little about combinatorial computation.

Combinatorial computation studies objects which we can think of
as arrangements of items.

For each class of objects, we seek algorithms for a few simple tasks.

Counting the number of paths from A to B on a graph is a kind of
combinatorial problem.

Other examples include the number of ways you can fold a map,
or how many ways you can rearrange the letters in your name.

The traveling salesman problem requires us to choose the best
itinerary for visiting N cities, which is a permutation.

120 / 145

PERM: Combinatorial Objects

The objects of combinatorial computations include:

subsets of a set of N items;

subsets of size K of a set of N items;

permutations of N items (ordered sequence);

combinations of K out of N items (unordered set);

compositions of an integer N into K parts;

partitions of a set of N items into K subsets.

121 / 145

PERM: Combinatorial Tasks

Once we have chosen a set of objects to study, they can usually
be numbered (or “ranked”) and listed.

Now combinatorial algorithms are available for these tasks:

enumerate: how many objects in the list?

generate: produce the next object in the list;

sample: generate one object at random;

rank: given an object, find its rank;

unrank: given a rank, find the object.

122 / 145

PERM: Combinatorial Tasks

Our combinatorial objects will be permutations.

A permutation of the numbers 1 through N (also called a
permutation of order N), is an ordered list in which each number
appears exactly once.

There are 6 permutations of order 3, and an ordered list of them is:

1: 1,2,3

2: 1,3,2

3: 2,1,3

4: 2,3,1

5: 3,1,2

6: 3,2,1

There are 24 permutations of order 4,
and N! permutations of order N.

123 / 145

PERM: Combinatorial Tasks for TSP

For the traveling salesman problem, each permutation is an
itinerary, that is, the order in which we visit the cities.

For small problems, we can check every possible itinerary;
for large problems, we’ll improve a randomly chosen itinerary.

Therefore, our combinatorial tasks will be:

generate all permutations one at a time;
- this will allow us to check every possible itinerary;

select a permutation at random;
- this will give us a random starting itinerary.

124 / 145

PERM: Random Permutation

We start with the task of choosing a permutation at random.

The algorithm for a random permutation of order N is:

Initialize P to [1, 2, ..., N];

for I = N down to 2

Choose a random integer J between 1 and I;
Swap P(I) and P(J);

end

Oops! Now we have to work out how to pick a random integer!!

125 / 145

PERM: Picking a Random Integer

We use the facts that rand () is strictly between 0 and 1,
and that ceil rounds up:

function j = randint (i)

j = ceil (i * rand ());

return

end

We’ll check our algorithm with the hist command:

n = 10000;

t = zeros(n,1);

for k = 1 : n

t(i) = randint (10);

end

hist (t)

126 / 145

PERM: Histogram for RANDINT

Our histogram looks OK, so we probably know how to select a
random integer between 1 and I...
so we can do a random permutation!

127 / 145

PERM: The Next Permutation

The algorithm for the next permutation is a little too
complicated to describe. However, you should be able to guess a
little bit about how it works by looking at the beginning of the
sequence for permutations of order 4:

1234 <-- 4 single, 34 increases.

1243 <-- 43 decreases, but 243 increases.

1324 <-- 4 single, but 24 increases.

1342 <-- 42 decreases, but 342 increases.

1423 <-- 3 single, but 23 increases.

1432 <-- 432 decreases, but 1432 increases

2134 <-- 4 single, but 34 increases.

2143

2314

...

4312 <-- 2 single, but 12 increases

4321 <-- 4321 decreases, nothing left.

128 / 145

PERM: The Next Permutation

I hate to give you an algorithm without at least some idea of
what is going on.

Can you match these ideas to the sequence on the previous slide?

1 If P is all zeros, return with P=1:N;

2 Seek I, the highest index for which P(I) < P(I+1);

3 If no such I, return with P=[];

4 Look for the highest J index so that P(I) < P(J);

5 Interchange P(I) and P(J);

6 Reverse the order of P(I+1:N) and return.

129 / 145

PERM: The PERM NEXT Function

The implementation of perm next is

function p = perm_next (p)

To print every permutation, you might write this:

p = zeros(5,1); <-- Initialize to [0,0,0,0,0].

while (1)

p = perm_next (p);

if (isempty (p)) <-- [] is returned at end.

break

end

fprintf (1, ’P = %d %d %d %d %d\n’, p(1:5));

end

For small TSP problems, we would use a loop like this to find the
cost of every possible itinerary.

130 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

131 / 145

TSP

The traveling salesman problem involves a salesman who has
been given a list of cities to visit. The salesman must choose a
starting city, visit every city on the list, and then return to the
starting city.

If the salesman travels by plane, then we assume that there is a
direct connection between any pair of cities.

If the salesman is driving, then probably only a few cities are
directly connected to the current city. We can make this problem
like the previous one by simply assigned the value ∞ as the
distance to each unreachable city.

The salesman has been given an expense account, and wants to
minimize the cost of the trip. And this means finding the round
trip that visits all the cities, but involves the least total distance
traveled.

132 / 145

TSP: A Simple Traveling Salesman Graph

133 / 145

TSP: A Brute Force Approach

A “brute force” algorithm is one that is guaranteed to work, but
which does not try to find any short cuts, or use any insight into
the problem.

A brute force solution of the TSP would be as follows:

Given: a set of N cities and their pairwise distances.

Initialize R* = [], D* = ∞;

While (more routes available),

Generate the “next” route R;
Measure D, the length of R;
If D < D*, update D* and R*.

R* is the best possible route, and D* is its length.

134 / 145

TSP: Use Brute Force on Example

There are 5! = 120 routes, but they come in sets of 10.
For instance:

ABCDE = BCDEA = CDEAB = DEABC = EABCD =

AEDCB = BAEDC = CBAED = DCBAE = EDCBA = 25.

However, if we just use brute force, checking all 120 possibilities,
we come up with a best route, which is (1,3,2,5,4) as a
permutation:

ACBED = 4 + 4 + 3 + 6 + 2 = 19.

(Remember that we include the cost of the return from D to A.)

135 / 145

TSP: Brute Force Solver

p = zeros (5, 1); dstar = Inf; pstar = [];

while (1)

p = next_perm (p);

if (isempty (p))

break

end

d = 0.0;

i = n; <--Explain!

for j = 1 : n

d = d + a(p(i),p(j)); <--Explain!

i = j;

end

if (d < dstar)

dstar = d; pstar = p;

end

end 136 / 145

TSP: A More Realistic Problem

How many itineraries are possible with 48 cities?

137 / 145

TSP: A Heuristic

The brute force approach cannot solve TSP problems of any
interesting size. And yet, solutions, or good approximate solutions,
have been found for problems with as many as 85,000 “cities”.

Sometimes we can try to come close to a good solution to a hard
combinatorial problem because there is a heuristic algorithm.

A heuristic for an optimization problem is a method of making a
good guess, or improving a random guess.

138 / 145

TSP: A Heuristic

Our heuristic for the TSP repeats the following process:

Pick a starting point at random, then build an itinerary by moving
from your current location to the nearest unvisited city, again and
again, until you must return home.

After generating many itineraries, choose the shortest one.

Quiz: If we are prepared to compute up to 100 itineraries, what is
different about problems of 50, 150, and 10,000 nodes?

139 / 145

TSP: The Nearest City Heuristic

Let’s use our heuristic on our simple TSP problem:

Start: Length

----- ----

A-(2)-D-(5)-C-(4)-B-(3)-E-(7)-A 21

B-(3)-A-(2)-D-(5)-C-(8)-E-(3)-B 21

C-(4)-A-(2)-D-(6)-B-(3)-E-(8)-C 23

D-(2)-A-(3)-B-(3)-E-(8)-C-(5)-D 21

E-(3)-B-(3)-A-(2)-D-(5)-C-(8)-E 21

We never found the optimal route of 19, but we did OK.

140 / 145

TSP: Improving a Good Route

Another technique allows us to make a good route better.

Suppose that the intercity distances are “real” distances, so that
they satisfy the triangle inequality:

distance (A to C) <= distance (A to B) + distance (B to C)

Then if our good route crosses itself, that is, the path from A to B
and the path from C to D cross over each other, then we can make
a better route by changing the itinerary so that we go from A to C
and from B to D.

141 / 145

TSP: Replace Green Lines by Red Ones

Quiz: Prove that the new itinerary must be shorter!

142 / 145

TSP: Summary

The TSP problem is one of very great interest for industrial
design, transportation authorities, communications systems, and,
of course, traveling salesmen with limited budgets!

Two very useful websites about the traveling salesman problem are:

http://www.tsp.gatech.edu/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

143 / 145

Graph Algorithms

Overview

Representing a Graph

Connections

The Connection Algorithm in MATLAB

Components

Adjacency

Depth-First Search

Weighted Graphs

The Shortest Path

Dijkstra’s Shortest Path Algorithm

The Minimum Spanning Tree

Permutations

The Traveling Salesman

Projects

144 / 145

PROJECTS: Suggestions

Some graph topics suitable for your final project:

the Euler all-edge cycle problem;

the Hamilton all-node cycle problem;

the traveling salesman problem;

the maze solving problem;

the graph coloring problem;

counting all possible trees with the Prüfer code.

Look these problems up and see if you’d be interested in working
on one of them.

145 / 145

