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You don’t get a second chance in planetary travel!

”Python ODE Solvers”

� ODE solvers offered by Python can handle more difficult problems;
� The solver can determine the appropriate stepsize;
� The solver can estimate the error being made;
� The solver can vary the order of the method.
� The solver can handle “stiff” problems.
� The user can control the output points and other solution parameters.

1 Why system solvers are needed

Any physical system that changes in a smooth way can be modeled by a set of ordinary differential equations.
And there are many ways to write such a system, some of which are much harder to solve than others. In
some cases, solving the ODE for a physical system is like walking along a very sharp mountain ridge. Even
a tiny step away from the correct path will lead you to a completely different result. Calculations involving
the weather are an example where even a small change in the initial condition is enough to utterly change
the solution path.

Reducing the stepsize can often improve accuracy. Changing the formula used to estimate the solution at
the next time step can also help. Estimating the error allows us to determine whether these changes are
necessary. But all these adjustments come at a cost, and if done carelessly, it can be impossible to get an
accurate solution efficiently. That is the job that we expect a system ODE solver to take over for us.

Python supplies ODE solvers that do an excellent job of handling systems that are much too hard for the
average user to deal with. We will look at a few difficult problems and see how to get a good answer.
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2 A stiff problem

Here’s an example of an ODE whose solution is somewhat like walking along a mountain ridge. We can
write it generically as:

y′ = λ ∗ (cos(t) − y)

y(t0) = y0

and we will pick the parameters to be

t0 = 0.0

y0 = 0.0

λ = 50.0

tmax = 1.0

n = 27

where n is the number of equal steps we plan to take over the interval [0.0, 1.0]. The exact solution of this
problem is:

y(t) = λ
sin(t) + λ cos(t) − λe−λt

λ2 + 1.0

If we compare the exact solution to what euler solve() returns we see a surprisingly bad result:

We can almost understand why the very first step is so bad, but how do we explain this crazy, persistent
oscillation?
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Pick any value of time t, and look just above and just below the blue line that represents the exact solution.
The direction field arrows are not close to being tangents to the curve. Instead, they are pointing very
sharply up and down. This is because the entire solution field wants to get as close as possible to the blue
curve, so every solution curve zooms up or down to the blue curve and only turns close to the tangent
direction at the last possible moment. This means that an ODE solver that tries to get the proper direction
has to be very close to the true solution in order to get useful information. If it is just a little away from the
true solution, it is told to jump up or jump down. This is why the approximate solution is so jagged.

3 Introducing solve ivp()

The scipy library includes a powerful general purpose ODE solver called solve ivp(), that does a good
job with equations like our stiff system. The format for calling this function is similar to the interface for
euler system(), leaving off n, the number of steps, and returning a single solution object sol that we have
to “unwrap” to get our results.

Here is a typical usage:

from s c ipy . i n t e g r a t e import s o l v e i v p
import numpy as np

tspan = np . array ( [ 0 . 0 , 1 . 0 ] )
y0 = np . array ( [ 0 . 0 ] ) # y0 must be an array , not a number !

s o l = s o l v e i v p ( s t i f f d y d t , tspan , y0 )

A few things may still be mysterious:

� The input quantity y0 must be an array, even if we are only dealing with one equation. In this case,
we just have to wrap our numeric value inside square brackets;
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� The output quantity sol contains the solution information. sol.t is the array of times. sol.y[0] is
the array of values of the first component If there are more components, they are in sol.y[1] and so
on.

Now if we wish to plot the solution data, we use the sol structure:

p l t . p l o t ( s o l . t , s o l . y [ 0 ] , ’ ro ’ , markers i ze = 10 )

When we plot points along the solution, we see what seems close to perfect agreement with the exact solution.
Note that the code took several small steps in time at the beginning, to get to the bend, after which the
solution is smooth and easy to follow.

4 Retry the predator-prey problem

In the previous class, we used the Euler method to solve a pair of predator prey equations. The solution was
rough, and did not show nice periodicity, presumably because we only used 200 steps. It was our task to
decide how many steps n to specify, so that we got a sufficiently accurate answer. In contrast, solve ivp()

is able to estimate how well it is approximating the answer, and will vary the stepsize as needed.

Using the call

s o l = s o l v e i v p ( predator prey dydt , tspan , y0 )

we can solve the predator prey problem again, plot the same quantities as before, and compare with the
results using 200 steps of our Euler method.

The time plot shows how inaccurate our Euler solution was. Instead of 2 1
3 peaks, we have 3 full peaks for

both species. The three peaks look to have essentially the same shape and height.
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The curve in the phase plane plot has been traced over 3 times, but you can just barely see that there is
some variation in the data.

The conservation measurement is flatlining, the way a perfect solution should.

5 How to use solve ivp()

You get access by the command

5



from s c ipy . i n t e g r a t e import s o l v e i v p

As always, get help by the command help ( solve ivp ).

The code measures its work by counting the number of times it calls the ODE right hand side function. This
quantity is stored as sol.nfev. It is not the same as the number of time steps, which is len(sol.t) and is
usually much smaller.

You can solve scalar ODE’s, but you have to make sure that your initial condition is input as a vector. For
instance, if the initial condition is 10, you pass [10.0], or a variable y0=[10], not just the number 10, and
not a variable just set to a number, y0=10.

The output quantity sol includes all the information about the solution. In particular, it returns a time
vector sol.t and a solution array sol.y. If your ODE is a system, this sol.y data is returns as a
“sideways” vector, not an “up and down” vector. In other words, the first component of the solution
is stored as sol.y[0])). (which is like a row) rather than sol.y[:,0] (which would be like a

column). If you need to work with column data, the easiest thing to do is make an up-and-down

copy by

y = np.transpose ( sol.y )

The code can take big steps, which mean that plotting the default pairs of (t, y) or making a

phase plane plot may result in a jagged and deceptive image. If you want to control where

the results are reported, use the t eval=? option:

t = np.linspace(t0 ,tmax ,500)

sol = solve_ivp ( stiff_dydt , tspan , y0 , t_eval = t )

and now the data in sol.t and sol.y will be at the finer mesh you requested.

By default, solve ivp() uses the ’RK45’ ODE solver.If the ODE is ‘‘stiff’’, then you can use

the method=? argument to switch to another solver, presumably ’BDF’ or ’RADAU.

sol = solve_ivp ( stiff_dydt , tspan , y0 , method = ’BDF’ )

6 Retrying the van der Pol equation

Let’s return to the van der Pol equation, and try our solve ivp() ODE solver. I am going to

change the initial conditions, because the value y0=[1,0] means that the solution starts out

with the right amplitude. Setting a bigger value for u0 means the solution will gradually

decrease to its desired size, while a smaller initial value results in an initial stage of

growth.

Having said that, let’s compare solutions for µ = 0, 1, 5 using euler system() and solve ivp():

The time plots match somewhat, although there are clearly difference. We used 500 steps for

each use of the Euler method, whereas solve ivp() used 87, 193, and 289 steps respectively

for the three values of µ. The time plots show that for our initial condition of [0.25,0.0],

the solution does go through a short period of growth before hitting periodicity. It also

suggests that as µ increases, the period of the solution increases as well.
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The phase plane plot suggests that after a very short time, the solution reaches the periodic

behavior and stays there. We can check this by extending the time period further, by looking

at other values of µ, and by varying the initial condition.

7 The Arenstorf orbit

In 1963, Richard Arenstorf worked out a set of equations for the stable periodic path of a

satellite that intersects the moon’s orbit. We let the earth be at the origin, and the moon’s

orbit is modeled as a circle of radius 1. Let (x, y) represent the location of the satellite

at time t, and (x′, y′) be the velocity components. Then the satellite’s path can be determined

from the equations

x′′ = x+ 2y′ −Me
x+Mm

D1
−Mm

x−Me

D2

y′′ = y − 2x′ −Me
y

D1
−Mm

y

D2

where

D1 = ((x+Mm)2 + y2)3/2

D2 = ((x−Me)
2 + y2)3/2
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where Me and Mm are the normalized masses of the Earth and the moon, so that

Me = 0.987722529

Mm = 0.012277471

with initial conditions

x(0) = 0.994

x′(0) = 0

y(0) = 0

y′(0) = −2.001584106

By converting the two second order differential equations into four first order equations,

we can use solve ivp to solve the system over the range 0 ≤ t ≤ 17 which is almost the full

period for the orbit.

One of the homework exercises asks you to try to convert the two second order ODE’s of this

Arenstorf system into a set of four first order ODE’s, so that they can be solved by solve ivp().

8


