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There is an endless diversity of polygonal shapes.

”Triangles and Polygons”

� In 2D, the basic object is the triangle;
� Algorithms can be found for area, containment, distance, and so on;
� Triangles can be combined to form polygons;
� Polygonal properties can be derived from the elemental triangles.
� Given data on a rectangular mesh, graphics packages interpolate a function over triangles;
� A function can be integrated over a polygon by working with elemental triangles.
� Partial differential equations (PDEs) may be posed over a 2D region;
� To approximate the PDE solution, If the region is filled with sample points, organized into

triangles, then a system of equations can be generated and solved..

1 Triangle coordinate system

Every point p in a triangle can be represented as a linear combination of the vertices A,B,C, of the form

p = α ∗A+ β ∗B + γ ∗ C

where the coefficients α, β, γ are nonnegative, and α+ β + γ = 1.

Here are the coordinates of a few special triangle points:
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alpha beta gamma

A 1 0 0

B 0 1 0

C 0 0 1

AB Mid 1/2 1/2 0

BC Mid 0 1/2 1/2

CA Mid 1/2 0 1/2

Centroid 1/3 1/3 1/3

Given any point p = (x, y) in the plane, and a triangle ABC, there is a procedure for computing α, β, γ, and
of course, knowing these coefficients, we can easily compute p. Moreover, a point p is inside the triangle if
and only if all the coefficients are positive.

This useful system is known as the set of barycentric coordinates, and in fact corresponds to the fact that
every point in the triangle must be a convex combination of the vertices.

We will see this coordinate system in action for random sampling, and for defining quadrature rules.

def t r i a n g l e b a r y c e n t r i c ( t , p ) :

import numpy as np

A = np . z e r o s ( [ 2 , 2 ] )
b = np . z e r o s ( 2 )

A[ 0 , 0 ] = t [ 0 , 0 ] − t [ 2 , 0 ]
A[ 0 , 1 ] = t [ 1 , 0 ] − t [ 2 , 0 ]
b [ 0 ] = p [ 0 ] − t [ 2 , 0 ]

A[ 1 , 0 ] = t [ 0 , 1 ] − t [ 2 , 1 ]
A[ 1 , 1 ] = t [ 1 , 1 ] − t [ 2 , 1 ]
b [ 1 ] = p [ 1 ] − t [ 2 , 1 ]

s o l = np . l i n a l g . s o l v e ( A, b ) ;
x s i = np . array ( [ s o l [ 0 ] , s o l [ 1 ] , 1 . 0 − s o l [ 0 ] − s o l [ 1 ] ] )

return x s i

2 Triangle sampling

To pick a point p inside an arbitrary triangle uniformly at random, we compute the barycentric coefficients
in the following way:

def t r i ang l e s amp l e ( t ) :
import numpy as np
r1 = np . random . rand ( )
r2 = np . random . rand ( )
alpha = 1 − np . sq r t ( r1 )
beta = np . sq r t ( r1 ) * r2
gamma = np . sq r t ( r1 ) * ( 1 − r2 )
p = alpha * t [ 0 , : ] + beta * t [ 1 , : ] + gamma * t [ 2 , : ]
return p

Requesting 100 sample points this way produces the following results:
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3 Triangle Monte Carlo method

If we can uniformly sample n points (xi, yi) in a triangle T , then we can use the Monte Carlo method to
estimate integrals, as follows:

I(f) =

∫
T

f(x, y) dx dy ≈ Q(f) =
Area(T)

n

i<n∑
i=0

f(xi, yi)

We can formalize this approach as a Python function:

def t r i a ng l e mon t e c a r l o ( t , f , n ) :

A = t r i a n g l e a r e a ( t )

Q = 0 .0
for i in range ( 0 , n ) :

p = t r i ang l e s amp l e ( t )
Q = Q + f ( p [ 0 ] , p [ 1 ] )

Q = ( A / n ) * Q

return Q

We could use this approach to estimate the integral of f(x, y) = x2 + y2 over our triangle. Since we don’t
know the answer, and we don’t know an appropriate value of n, we can just experiment by increasing n and
hoping to see the results settle down.

10 856.01

100 808.75

1000 794.77

10000 807.04

100000 808.06

From these results, we might guess that I(f) ≈ 808 but the results really haven’t settled down enough to be
reasonably confident.
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4 Triangle quadrature rules

There are families of quadrature rules for triangles, which specify a set of n points (xi, yi) and weights wi,
and guarantee a precise answer for all polynomial integrands up to a particular degree d.

A rule which is precise for all polynomials of degree 0 ≤ d ≤ 1 is the 1-point centroid rule. Here, we describe
the

x y w

[ 1/3 1/3 1/3] [ 1/3 1/3 1/3 ] [ 1.0 ]

If we use this rule on our integral, we get the pretty crude estimate of 695.55. If we don’t know the exact
answer, then we need some other way to get some better estimates. What are our options?

5 Triangle refinement

One way to improve the estimate produced by a quadrature rule is to split the triangle up into smaller
triangles, and apply the rule over each subtriangle. Even the centroid rule rule can be improved this way.
Here is an illustration of the decomposition of our triangle:

After step 5, refinement into 25 subtriangles.

and here are the integral estimates using n subtriangles

C N Estimate

1 1 695.556

2 4 778.889

3 9 794.321

4 16 799.722

5 25 802.222

6 36 803.58

7 49 804.399
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8 64 804.931

9 81 805.295

10 100 805.556

So, it looks like, with just 100 points, the centroid rule is already converging in a regular fashion, whereas
our Monte Carlo rule was still producing significantly varying estimates.

6 Triangle rule of higher degree

Another way to improve an estimate for the integral of a function over a triangle rule is simply to find a
stronger quadrature rule. We happen to know of a six point quadrature rule for triangles, which is exact for
integrands through degree 4.

To define the rule, we need to set up some parameter values first:

a = 0.816847572980459; b = 0.091576213509771; u = 0.109951743655322;

c = 0.108103018168070; d = 0.445948490915965; v = 0.223381589678011;

Then a, b, u define the first three points and weights, and c, d, v the remaining three, as follows:

x y w

barycentric barycentric

[ a, b, b ] [ b, a, b ] u

[ b, a, b ] [ a, b, b ] u

[ b, b, a ] [ b, b, a ] u

[ c, d, d ] [ d, c, d ] v

[ d, c, d ] [ c, d, d ] v

[ d, d, c ] [ d, d, c ] v

To be clear, the (x, y) coordinates of the first quadrature point are computed using [a, b, b] and [b, a, b] as
barycentric coordinates:

x[0] = a*4 + b*8 + b*0 = 4.00...

y[0] = b*1 + a*3 + b*9 = 3.36...

and their contribution to the integral estimate is u ∗ f(x[0], y[0]). Using these six quadrature points, the rule
gets an integral estimate of 806.66... which is the exact answer, since the integrand degree is 2.

7 Triangles as building blocks

The reason for working so hard on triangles is that we will now be able to handle almost any other shape
that is polygonal, or that can be approximated by polygons. This is so because, as we shall see, we can take
polygons or general sets of points, and organize them into triangles.

Using simple methods, we can then compute area, angles, centroids, integral estimates and so on for these
polygonal structures. We will next suggest how this triangularization process can be done in a computational
fashion.

8 Representing a Polygon

A polygon in 2D can easily be represented by extending the way we represented a triangle. So we would
create an array v which lists the (x, y) coordinates of the vertices in counter clockwise order.

Let us take for our example the following polygon:
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v = np . array ( [ [ 0 , 0 ] , [ 4 , 0 ] , [ 2 , 2 ] , [ 1 , 2 ] , [ 0 , 1 ] , [ 1 , 1 ] ] )

Here is an image of the polygon:

Outline of example polygon.

9 Representing a triangulated polygon

If we wish to apply our triangle knowledge to the study of polygons, then we will need to see a polygon as
a collection of triangles. In that case, we need to decompose the polygon into triangles. We can do this
by creating an array tri which describes each triangle in terms of the polygon vertices. For our example
polygon, we could write

t r i = np . array ( [ [ 0 , 1 , 2 ] , [ 2 , 3 , 5 ] , [ 3 , 4 , 5 ] ] )

Think of each entry of tri as ti, a list of indices in the vertex array, that form a triangle. For any list ti,
there is a corresponding triangle t=v[ti]. Using the information from the v and tri arrays, we could plot
our polygon as follows:

for t i in t r i :
x = [ v [ t [ 0 ] , 0 ] , v [ t i [ 1 ] , 0 ] , v [ t i [ 2 ] , 0 ] ]
y = [ v [ t [ 0 ] , 1 ] , v [ t i [ 1 ] , 1 ] , v [ t i [ 2 ] , 1 ] ]
p l t . f i l l ( x , y )

for t i in t r i :
for i in range ( 0 , 3 ) :

ip1 = ( i + 1 ) % 3
x = [ v [ t i [ i ] , 0 ] , v [ t i [ ip1 ] , 0 ] ]
y = [ v [ t i [ i ] , 1 ] , v [ t i [ ip1 ] , 1 ] ]
p l t . p l o t ( x , y , ’ k− ’ )

i = 0
for xy in v :

p l t . p l o t ( xy [ 0 ] , xy [ 1 ] , ’ b . ’ , markers i ze = 20 )
p l t . t ex t ( xy [ 0 ] , xy [ 1 ] + 0 .10 , str ( i ) , f o n t s i z e = 20 )
i = i + 1

6



with the result:

Outline of example polygon.

10 Two ways of computing the area of a polygon

Earlier in one of our homework assignments, we saw the “shoelace” algorithm for computing the area of a
polygon.

def po l ygon a r ea shoe l a c e ( v ) :

import numpy as np
n = v . shape [ 0 ]
np . append ( v , v [ 0 ] )
area = 0 .5 * ( np .sum ( v [ 0 : n−1 ,0] * v [ 1 : n , 1 ] ) \

− np .sum ( v [ 1 : n , 0 ] * v [ 0 : n−1 ,1] ) )
return area

If we have triangulated our polygon, we can compute its area as the sum of the areas of the triangles:

po lygon area = 0
for t i in t r i :

t = np . array ( v [ t i ] )
po lygon area = polygon area + t r i a n g l e a r e a ( t )

11 Centroid of a polygon

There is an interesting property of centroids. If a shape S of area A can be divided into smaller shapes si
with areas ai, then the centroid C of the big shape is the average of the area ai times the centroid ci of each
of the little shapes:

C =

∑
aici
A

The only reason this helps us is that if we have divided our big shape into triangles, then we know how to
compute the areas and centroids of the smaller shapes. Thus, for a triangulated polygon, we have
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def po lygon cent ro id ( v , t r i ) :

import numpy as np
t num = t r i . shape [ 0 ]
c en t r o id = np . z e r o s ( 2 )
area = 0 .0
for t i in t r i :

t = np . array ( v [ t i ] )
t a r e a = t r i a n g l e a r e a ( t )
t c e n t r o i d = t r i a n g l e c e n t r o i d ( t )
area = area + t a r e a
c en t r o id = cen t ro id + t a r e a * t c e n t r o i d

c en t r o id = cen t ro id / area
return c en t r o id

12 Does a polygon contain a point?

Because a polygon is not guaranteed to be convex, our trick that worked for triangles may not work for
general polygons. For nonconvex polygons, while we walk around the boundary, a point that is actually
inside the polygon may appear sometimes on our left and sometimes our right. The way to answer this
question is to work with a polygon that has been subdivided into triangles. If the point is in the polygon,
it must be in one of the triangles, and so we simply have to start assuming the answer is “No”, check every
triangle, and change our answer to “Yes” if we spot the point.

def po lygon con ta in s po in t ( v , t r i , q ) :

import numpy as np
t num = t r i . shape [ 0 ]
va lue = False
for t i in t r i :

t = np . array ( v [ t i ] )
i f ( t r i a n g l e c o n t a i n s p o i n t ( t , q ) ) :

va lue = True
break

return value

13 Integral over a polygon

If we are interested in estimating the integral of a function over a polygon, and we have divided the polygon
into triangles, then we can simply compute the integral estimate over each triangle, and sum them.

For example, we can estimate integrals using the very low accuracy 1 point triangle rule as follows:

def polygon quad1 ( v , t r i , f ) :
import numpy as np
Q = 0.0
for t i in t r i :

t = np . array ( v [ t i ] )
Q = Q + tr i ang l e quad1 ( t , f )

return Q

And since we have also defined a six point rule called triangle quad6(), we can easily improve our estimate
for the polygon integral by using that function instead.
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14 Sampling a polygon

To uniformly sample points from a polygon takes a little extra care. We will assume the polygon has been
triangulated. Now we know how to sample a point from any of these triangles, but how should we pick which
triangle to sample? The answer is that the choice must be made at random, but with a probability that
is proportional to the area of each triangle. Unless all the triangles have the same area, this requires some
extra work; we need to make a sort of ruler that runs from 0 to 1, marked off at certain points that indicate
which triangle to sample. We will save the details of this process to the next discussion.

Here is a partial code that suggests how the sampling would work:

def polygon sample ( v , t r i ) :
import numpy as np
tri num = t r i . shape [ 0 ]
Choose t r i a n g l e index 0 <= i < tr i num in the r i g h t way
t = np . array ( v [ t i [ i ] ] )
p = t r i ang l e s amp l e ( t )
return p
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