Assignment #2
Math 1800: Mathematical Programming in Python

Instructions: Choose 3 of these problems. Some are hard, some easy. Some are boring, and some are
interesting. As your answer, submit Python text files, with the extension .py. Each file should include your
name and the problem number.

e Problem 2.0: Use Python commands to determine which of the following 8 integers are prime:

31; 331; 33315 33331; 333331; 3333331; 33333331; 33333331.

e Problem 2.1: Euler announced that 1,000,009 is a prime number. Was he right? Use Python to
investigate his claim.

e Problem 2.2: Euler found a formula p(n) = n? 4+ n+41 which he suspected would produce many prime
values. Write a function called euler41(n) which evaluates this formula for any value of n. Start with
n = 0, for which p(n) = 41, which is prime. Increase n by ones, evaluate p(n). Keep increasing n until
the formula p(n) returns a nonprime (composite) value. What are the values of n and p(n) when this
happens?

e Problem 2.3: We have discussed four versions of an is_prime() function, trying to make an efficient
one.

1. The basic code

2. The code with a break statement

3. The code that only goes up to /(n)

4. A code that skips divisors that are multiples of 2 or 3. See the Wikipedia page on Primality_test

Modify each function so that it counts the number of times the modulo function (n%d) is used. Run
each function on the input n = 27644437 and report how much work was done, that is, how many
times the modulo function was called. Does each code on the list seem more efficient than the previous
ones?

e Problem 2.4: In number theory, the prime factorization of an integer n can be written as a product of
k prime numbers p; raised to exponents e;:

— €1 €2 €k
n=py Py ... Dp

Rather than use exponents, we can simply write a repeated factor several times. Thus, 740 = 2 x 2 X
5 x 37 and 337 = 337 (it’s a prime!). Write a Python program factor(n) which accepts a number
n and prints out the prime factorization. This is actually a tricky program to write. Your best bet
would be to use a while() statement, something like this:

for every divisor from 2 up to and including n (careful here)!
while n is bigger than 1
if n is divisible by i
print i
divide n by i

Note that when you divide n by ¢, you want to write n = n // i, otherwise Python will make the
result a real number and mess everything up! Use your program to factor the three numbers n =
1120, 2023, 314159265.



Problem 2.5: In number theory, the function 7(n) counts all the primes less than or equal to the integer
n. Thus, 7(10) = 4, 7(11) = 5,7(12) = 5. Write a Python function prime_pi(n) that can evaluate m(n)
for any integer n. Compute 7(n) for each of the three values n = 64,256, 1024.

Problem 2.6: Although he tried, Gauss never found a simple formula for 7(n). Instead, he ended

up looking for mathematical approximations. One such estimate is 7(n) = ﬁ. For instance,
7(128) = 31 while foz(my = 26.38.... The relative error is 312628 ~ 0.15. Make a table of the relative

error of Gauss’s approximation as n increases; you might look at n = 256,512,1024 and a few more
values, and decide if Gauss was on the right track.

Problem 2.7: In number theory, the function o(n) counts the sum of all the distinct divisors of n, includ-
ing 1 and n itself. Thus, o(10) = 18,0(11) = 12,0(12) = 28. Write a Python function sigma(n) that
can evaluate o(n) for any integer n. Compute o(n) for each of the four values n = 617,816, 1000, 1024.

Problem 2.8: In number theory, the function 7(n) counts all the divisors of the integer n, including 1
and n itself. Thus, 7(10) = 4,7(11) = 2,7(12) = 6. Write a Python function tau(n) that evaluates
7(n) for any integer n. Compute 7(n) for each of the four values n = 521,610, 832, 960.

Problem 2.9: In number theory, the function known as gpf(n) returns the greatest prime factor of
the integer n, that is, the largest prime p that is a factor of n. Thus, gpf(12) = 3,g9pf(13) =
13,gpf(14) = 7. Write a Python function gpf(n) that evaluates the greatest prime factor for n =
95,698, 751, 364, 526.

Problem 2.10: Verify the formula key = p; % po for the RSA example. Your program will be very
simple, having the form

pl = ...

p2 = ...

key = ...

plp2 = pl * p2

diff = key - plp2

print ( ’diff = ’>, diff )

The difference should be zero (unless you or I made a typing mistake in listing the values!) I am asking
you to do this mainly to convince you that integer arithmetic in Python allows you to work with very
large values. This is not the case in most other computer languages.



