
The Page Rank Problem
MATH1310: Graph Theory

https://people.sc.fsu.edu/∼jburkardt/classes/math1310 2020/math1310 2020.pdf

The size of each node reflects its importance, and is related to the importance of the nodes pointing to it.
[Image from Wikipedia]

Page Ranking

Given a collection of objects, and a set of directed links (one object “points to” another object),
determine which objects are most important.

1 Feeding the cows

A simple three-field system for grazing cows.

A farmer’s cows have three fields to graze in: Apton, Benton, and Clinton. The cows stay in each field for
a day. There are one-way gates that connect Apton to Benton to Clinton to Apton, and each morning the

1

cows move to the next field, where the farmer has already delivered the day’s supply of food. There are 100
cows, and each cow eats 10 pounds of special feed a day, so the farmer’s schedule is a simple rotation of
delivering 1000 pounds of feed to Apton, then to Benton, then to Clinton, and back to Apton.

The blasted four-field system for grazing cows.

The farmer is able to buy an extra field called Dayton. There is a gate leading from Clinton to Dayton, and
another gate goes from Dayton to Apton. When the cows are leaving Clinton, they now have two choices:
go to Dayton or Apton. Typically, half go one way and half the other. The farmer figures that on the
fourth day, instead of dropping 1000 pounds of feed at Apton, he will drop 500 at Dayton and 500 at Apton,
because that’s how the cows split up. On day five, he will have to drop 500 at Apton and 500 at Benton,
on day 6, the same at Benton and Clinton. On day 7, half of the cows in Clinton go to Dayton and half to
Apton, and this is just getting too complicated.

The farmer is sorry he bought the field. Can we help calculate what is going to happen, and whether his life
is going to continue to get more and more complicated? We start filling in a table, and the farmer is not
happy to see what we predict will happen on day 10!

Day Apton Benton Clinton Dayton
1 100 0 0 0
2 0 100 0 0
3 0 0 100 0
4 50 0 0 50
5 50 50 0 0
6 0 50 50 0
7 25 0 50 25
8 50 25 0 25
9 25 50 25 0

10 12.5 25 50 12.5 cowmageddon?

2 Using graph theory

A graph is a set of nodes, labeled 1 through n, and edges, which are pairs of node labels. In a graph, the edge
(i, j) means there is a link between nodes i and j which can be traveled in either direction. The adjacency
matrix A for such a graph has a 1 in both entries Ai,j and Aj,i for each edge (i, j).

A directed graph, also called a “digraph”, is, as before, a set of nodes and directed edges. The directed edge
(i, j) means there is a link from node i to node j, which can only be traveled in that direction. If travel is

2

possible in either direction, we must list both (i, j) and (j, i) as directed edges of the directed graph. The
incidence matrix A for a digraph has a 1 in entry Ai,j corresponding to a directed edge (i, j).

Clearly, to discuss the farmer’s problem, we are dealing with a digraph. Here is the incidence matrix for the
four field grazing area:

A =

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

We will also be interested in something called the transition matrix. Given an incidence matrix A, the
transition matrix T is found by

1. copy T ← A;

2. if row i is completely zero, set Ti,i = 1;

3. dividing each row by the sum of its entries;

4. transposing the resulting matrix.

For our four-field problem, we have:

A =

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

→

0 1 0 0
0 0 1 0
1
2 0 0 1

2
1 0 0 0

→

0 0 1
2 1

1 0 0 0
0 1 0 0
0 0 1

2 0

 = T

The transition matrix has several properties we will need later:

1. it is square;

2. all entries are nonnegative;

3. each column sums to 1

A matrix with these properties is often called a stochastic matrix or a Markov matrix, because it has important
uses in probability, statistics, and simulation.

Our transition matrix has two interesting uses:

� it can be used to model a random walk of one person along the graph;
� it can be used to model the “flow” of many people along the graph;

In particular, suppose that the vector x1 is a list of the number of cows at each location on day 1. As it
turns out, two cows died, so we are down to 98 cows. Set x2 = T ∗ x1, and x3 = T ∗ x2 and so on. We don’t
have to work this data out, we can just let MATLAB do it for us:

x = [98 ; 0 ; 0 ; 0]
for i = 1 : 59

x = T * x
end

1 98.0000 0 0 0

2 0 98.0000 0 0

3 0 0 98.0000 0

4 49.0000 0 0 49.0000

5 49.0000 49.0000 0 0

6 0 49.0000 49.0000 0

7 24.5000 0 49.0000 24.5000

8 49.0000 24.5000 0 24.5000

3

9 24.5000 49.0000 24.5000 0

10 12.2500 24.5000 49.0000 12.2500

...

20 24.5000 32.1562 30.6250 10.7188

30 28.3281 29.2852 26.9883 13.3984

40 28.3401 27.9932 27.5625 14.1042

50 28.0560 27.9019 27.9722 14.0699

60 27.9877 27.9773 28.0262 14.0087

It turns out this process is converging to the solution x = [28, 28, 28, 14]. Does this make sense? Looking
at the arrangement of fields, this works perfectly. Although the cows move everyday, the number of cows
in each field stays the same. This is a steady state solution, and is something like a river that flows back
around into itself.

Thus we can tell the farmer that, in about two months, the feeding pattern will have settled down, and he
can deliver 280 pounds of feed to Apton, Benton, and Clinton fields every day, and 140 pounds to Dayton.

The process of repeatedly multiplying a vector x times a matrix T is an example of the power method. In
certain cases, this process will converge: for us, that means that x will stop changing. In that case, we have
found an eigenvector of the matrix T, corresponding to the eigenvalue of 1. That just says that x = T ∗ x,
where now we are using mathematical equality, not computer reassignment.

x = rand (n , 1) ;
for i t = 1 : it max

xold = x
x = A * x ;
lambda = norm (x) / norm (xold) ;

end

But now let’s go back to the Apton-Benton-Clinton field and try the same power method. Instead of
converging, we saw that the vector x = [100; 0; 0] produces a repeating cycle of distinct values. The power
method doesn’t give us a steady solution for this starting value. We know that there is one: just start with
1
3 of the cows in each field. So for that problem, using the “wrong” starting value will mean that we never
get the answer we are looking for.

This suggests that we can’t be sure that the power method, given a random starting vector, will converge
to a steady flow on our network. Can someone please tell me if we can fix this?

3 Here comes the math!

The Perron-Frobenius Theorem (version 1):
If A is a square matrix whose entries are all strictly positive, then the largest eigenvalue is real, positive,
and simple (not repeated). All other eigenvalues are strictly smaller in norm. There is a corresponding
eigenvector whose entries are all strictly positive.

The Perron-Frobenius Theorem (version 2):
If A is a square matrix whose entries are all strictly positive, and each of whose columns sums to 1, then the
largest eigenvalue is 1. This eigenvalue is simple. All other eigenvalues are strictly smaller in norm. There
is a corresponding eigenvector whose entries are all strictly positive.

The Perron-Frobenius Theorem (version 3):
If A is a square matrix whose entries are all nonnegative, and the matrix is irreducible, and each of the

4

columns sums to 1, then there is an eigenvalue of 1, and there is no larger eigenvalue. This eigenvalue is
simple. There is a corresponding eigenvector whose entries are all nonnegative.

The first two versions of the theorem don’t quite apply to our transition matrix T , because it includes zero
entries. The third version will apply if our matrix is irreducible. The word irreducible looks scary here, but
for our purposes, it just means that our graph must be strongly connected, that is, you must be able to
start at any node and reach any other node. This is certainly true for the two examples we have discussed.

Because version 3 of the Perron-Frobenius theorem applies to our transition matrix T , there must be a
eigenvector x corresponding to the eigenvalue 1, so that x = T ∗ x. And indeed, that’s what we found. This
means that we could figure out a permanent feeding routine for any configuration of fields, as long as the
fields are strongly connected.

However, since we are stuck with version 3 of the theorem, we don’t know that 1 is the only eigenvalue
of magnitude 1. If there are other eigenvalues of the same size, then the power method will generally not
converge to the desire solution. Could this explain our issues with the three field problem?

Let’s ask MATLAB:

A = [0 , 1 , 0 ;
0 , 0 , 1 ;
1 , 0 , 0] ;

T = [0 , 0 , 1 ;
1 , 0 , 0 ;
0 , 1 , 0] ;

[Vec , Val] = e i g s (T)

Vec =

0.5774 + 0.0000 i 0 .5774 + 0.0000 i −0.5774 + 0.0000 i
−0.2887 − 0 .5000 i −0.2887 + 0.5000 i −0.5774 + 0.0000 i
−0.2887 + 0.5000 i −0.2887 − 0 .5000 i −0.5774 + 0.0000 i

Val =

−0.5000 + 0.8660 i 0 .0000 + 0.0000 i 0 .0000 + 0.0000 i
0 .0000 + 0.0000 i −0.5000 − 0 .8660 i 0 .0000 + 0.0000 i
0 .0000 + 0.0000 i 0 .0000 + 0.0000 i 1 .0000 + 0.0000 i

norms = diag (Val * Val ’)

norms =

1.0000
1 .0000
1 .0000

Our three-field matrix has three eigenvalues of norm 1. Two of them are imaginary. If our starting vector
includes components of the corresponding eigenvectors, they will never disappear. The power method cannot
converge to the eigenvector associated with the eigenvalue of 1, because of the presence of the two imaginary
eigenvalues of equal norm.

In practice, imaginary eigenvalues are associated with regular oscillations in the solution. That’s exactly
what we see in our three-field problem.

This means that version 3 of the Perron Frobenius theorem is not enough to guarantee that the power
method will give us what we are looking for if we want to analyze a graph.

5

4 The Search Problem

It is hard to explain how impossible the Internet search problem is. When you search for ”banana cake”, a
search engine

1. guesses that you are most likely interested in food or recipes, and not the movie “Bananas”, or the
rock band “Cake” or the expression “going bananas”;

2. out of all the web pages in the universe, identifies those that seem to match your interest.

3. offers to show you any of these pages, starting with the “most important” ones.

4. retrieves and displays any page you select;

Today, we will only talk about part of item #3:

Once the search engine has a list of all the hundreds of thousands of web pages that are relevant
to your search, how does it know which pages to show first?

While we think about this question, we must realize that Google can search pages in any language. In step
#2, Google does look at matching words in the pages, but the ranking operation does not involve the page
content at all! At that point, the pages could be written in a Martian language.

The idea seems simple at first. Web pages can link to other web pages. Therefore, we can try to assign
importance based on these links.

The simplest idea is that the rank or importance of a web page is equal to the number of links pointing to
it. But surely not all links are equal. If one web page is pointed to by 10 “unimportant” (low ranked) web
pages, and the other is pointed to by 10 important web pages, we would probably think the second page is
more important, because it collects the importance of the pages that point to it.

So a better idea would be to assign importance by transferring it to a web page from all the web pages
linking to it. To get started, we might give an initial important of 1 to any web pages that has no inlinks,
and then work from there. But in most cases, this recalculation becomes an endless task.

Updating importance estimates for the ABCDE network becomes an endless chase.

Instead of chasing these numbers around the directed graph forever, let’s realize that what we want is a
vector of importance values x so that they “flow” around the network in an unchanging pattern. That is,
we are, once again, looking for a solution to x = T ∗ x, where T is the transition matrix for the network.
This is a problem we know how to solve. MATLAB offers the eig(A) command, or we could simply try to
use the power method, repeatedly executing x← T ∗ x.

This approach will work fine with textbook examples. However, there are still some simple problems that
we need to deal with before we can confidently handle a general network.

5 The Google modification

According to the simple ranking rule we have imposed, the importance values of the ABCDE network are
x=[1;1;0;0;1], that is, pages C and D have no importance, because no one links to them; while A seems

6

more important than B and C, its two extra inlinks are from pages of 0 importance, so we rank it the same
as B and C. Now we don’t want any page to have zero importance, because there must be some bit of value
there, and someone could always randomly choose that page. And A ought to get some credit for the extra
inlinks! These minor problems will be easy to fix.

Another problem arises if a page has no outlinks. In the cow example, this would mean that the cows would
be stuck in a particular field with nowhere to go next. In our web page model, a user would be viewing
a given page, and have no new page to move to. Such a situation will cause problems for our importance
rankings.

Another problem that could arise is that, for the Perron-Frobenius theorem to apply, we needed the network
to be strongly connected: from any web page, you should eventually be able to reach any other web page
by following some path of links. That is not true for our ABCDE example. And we can expect that on the
Internet itself, there are many completely separate “islands” of web pages with no connections whatsoever.

We have already mentioned that, when forming the transition matrix, if we come across a row i in the
adjacency matrix which is entirely zero, (no outlinks), we can “patch” the transition matrix with an entry
Ti,i = 1. However, the fact that the transition matrix still includes many zero values means that we can only
invoke version 3 of the Perron Frobenius theorem; there may be multiple eigenvalues of magnitude 1, and so
the power method might not converge to a single eigenvector.

To take care of web pages with no inlinks or outlinks, and disconnected groups of web pages, the Google
approach made a simple modification to the transition matrix model. We imagine a user is currently viewing
a given web page. Most of the time, the user’s next move is to move to a page pointed to by the current
page (assuming there is at least one.) But sometimes, the user just jumps to a randomly selected web page.

In our new model, suppose the user is on a given web page. Then, with probability p, the next thing the
user will do is jump to a random web page. With probability 1− p, the user will randomly choose a link on
the current page and move there. Repeat this many times. The importance or ranking of a page is then the
number of times the user visited it.

One is simply to realize that the jumping process to a random link can be modeled by changing our incidence
matrix. Starting with the classic matrix A, let let 1 represent an n × n matrix of 1’s. If our probability of
jumping to a random page is p, then we can modify our incidence matrix to

Ap ← A + p ∗ 1

Now every entry of Ap is nonzero, but some are 1 + 1
p and some are 1

p . We can interpret these values as the
width or capacity or probability of using each link. Let T be the transition matrix of our original matrix A.
Then the “Google transition matrix” will be:

G = (1− p) ∗ T +
p

n
∗ 1

Notice that the effect of adding random jumping is to make every entry of the matrix G strictly positive.
This means we can rely on version 2 of the Perron Frobenius theorem: there is a simple eigenvalue equal to
1, all other eigenvalues are strictly smaller, and so the power method will converge and we will get a unique
eigenvector solution no matter what starting vector we use.

Once we have the matrix G, then we can use the eigs() function or the power method to seek the eigenvector
corresponding to the value 1.

A second approach is to simply simulate the user’s journey of jumps and moves. This way is called the “web
surfer” model. Because the web is enormous, it is not practical to actually try to form the incidence and
transition matrices. This is one example of what is now called “big data”, that is, problems that are so large
that simply storing or representing all the information becomes a major task by itself. Rather than trying

7

to work on a representation of the web, we just use the web itself. We assume we can find any random page,
and that on any page we can choose a random link. In that case, we have the “web surfer” ranking approach:

function r=surf_rank(A) Estimate page ranks

n = size(A,1) Set number of web pages

p <-- 0.15$ Set jump probability

count(1:n) <-- 0$ Set all page counts to 0

i <-- random page

for 1 <= j <= steps

if rand() < p

i <-- random page in network

else

i <-- random link on this page

end if

count(i) <-- count(i) + 1

end for

r(1:n) <-- count(1:n) / steps

return r

end function

6 Example: A tiny network

As an example of the ranking calculations, consider this 5-node system studied by Cleve Moler:

A 5-node (not simply connected!) network.

Using the transition matrix T , we take 100 power method steps, and then look at the next iterates:

r100 r101 r102

1: 0.011 0.011 0.010

8

2: 0.005 0.005 0.005

3: 0.003 0.003 0.003

4: 0.004 0.004 0.004

5: 0.970 0.971 0.972

6: 0.007 0.006 0.006

The values haven’t settled down. The ranking for node #5 is increasing, and the others are dropping.
Imagine the cows again. They can wander randomly from field to field, but if they reach the fifth node, they
can never leave. So eventually, that’s where all of them will be.

Now let’s try the same procedure, but using the Google matrix, which allows for occasional random jumps:

r100 r101 r102

1: 0.235 0.235 0.235

2: 0.124 0.124 0.124

3: 0.078 0.078 0.078

4: 0.100 0.100 0.100

5: 0.314 0.314 0.314

6: 0.147 0.147 0.147

The first thing to note is that the iteration has converged. Node #5 no longer traps all the cows or all the
users. The random jumps allow them to leak away to other nodes. Secondly, node #5 still has very high
rank, but node #1 has comparable ranking, based roughly on the sum of the rankings of nodes #4 and #6.
While having no outlinks seems to favor node #5, it is no longer the black hole that it represented before.
Now we have a more uniform sampling of the network, and a mathematically-based estimate of the page
rankings.

7 Example: Sauer’s internet

In the textbook, Numerical Analysis by Timothy Sauer, the following adjacency graph is shown:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1: 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

2: 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

3: 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0

4: 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

5: 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

6: 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

7: 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

8: 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

9: 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

10: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

11: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12: 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0

13: 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

14: 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1

15: 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

9

A plot of Sauer’s network.

Now we can apply several methods to assign a rank to each of the nodes. From the incidence matrix A, we
can compute the transition matrix T , and the Google matrix G, using a random jump probability of 0.15.

1. We ask MATLAB to compute the eigenvector corresponding to the eigenvalue 1.

2. We can apply the power method.

3. We can try the random surfer technique, starting anywhere, then randomly choosing an existing link,
and count how many times we visit each node.

Similarly, we can compute the Google matrix G, using a random jump probability of 0.15. Doing this means
we don’t have to worry about whether the graph is strongly connected. Again, we can try:

1. MATLAB eig.

2. Power method.

3. Random surfer, including random jumps with probabiity p;

Sauer’s matrix is strongly connected, so if we prefer, we can use the transition matrix. Here are the results
using 100 steps of the power method on T , or calling MATLAB’s eig()

power eig()

1: 0.0154 0.0154

2: 0.0115 0.0115

3: 0.0115 0.0115

10

4: 0.0154 0.0154

5: 0.0308 0.0308

6: 0.0308 0.0308

7: 0.0308 0.0308

8: 0.0308 0.0308

9: 0.0810 0.0810

10: 0.1100 0.1100

11: 0.1100 0.1100

12: 0.0810 0.0810

13: 0.1467 0.1467

14: 0.1467 0.1467

15: 0.1467 0.1467

Here we see that the power method has a 4-digit match with MATLAB’s eigenvalue calculation.

Now let’s work with the Google matrix G instead, using the typical probability p = 0.15. Using 100 steps
of the power method, or MATLAB’s eig() function, or 100,000 steps of the surfer technique, we get the
following page rankings:

power eig surf

1: 0.0268 0.0268 0.0259

2: 0.0298 0.0298 0.0303

3: 0.0298 0.0298 0.0301

4: 0.0268 0.0268 0.0271

5: 0.0395 0.0395 0.0392

6: 0.0395 0.0395 0.0395

7: 0.0395 0.0395 0.0391

8: 0.0395 0.0395 0.0403

9: 0.0745 0.0745 0.0738

10: 0.1063 0.1063 0.1056

11: 0.1063 0.1063 0.1070

12: 0.0745 0.0745 0.0745

13: 0.1250 0.1250 0.1247

14: 0.1163 0.1163 0.1164

15: 0.1250 0.1250 0.1265

from which we can conclude that we used enough power method steps, but maybe, if we wanted 4 digit
accuracy, the surfer should have used more steps!

Now, with so many choices, which calculation do we prefer? Well, first of all, we need something like the
Google modification in order to make the Internet look strongly connected. The power method and direct
eigenvalue/eigenvector calculations require having an explicit form for the transition matrix. We can’t afford
that if we really want to model the Internet. On the other hand, Google can afford to send out multiple web
crawlers, which do nothing but surf the Internet. These can be programmed to do the random jump/random
link algorithm, and to send back the running totals of the pages they have visited. The results from all the
web crawlers can be combined into a single count array, which, when normalized, gives a good estimate of
the web page ranking. If we throw out the oldest count information as time passes, then our ranking will
automatically keep track with changes on the web.

Thus, the PageRank algorithm allows a search engine company to rank all the web pages on the Internet.
And thus, once the search engine has created a list of all the web pages that match your “banana cake”
query, it can use the rankings to decide which pages to show first. Thus, the PageRank algorithm is just a
part of a much more involved system of quickly and efficiently returning a search result.

11

On the web page for this presentation, there is MATLAB code that defines the various directed graphs and
that carries out the ranking procedures that have been discussed.

8 Reference:

1. John MacCormick,
Nine Algorithms That Changed the Future: The Ingenious Ideas that Drive Today’s Computers,
Princeton University Press,
ISBN-13: 978-0691158198.

2. Cleve Moler,
Experiments with Matlab,
Chapter 7: Google PageRank
https://www.mathworks.com/moler/exm/chapters/pagerank.pdf

3. Timothy Sauer,
Numerical Analysis,
Pearson, 2006,
ISBN: 0-321-26898-9,
LC: QA297.S348.

4. Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey
McLachlan, Angus Ng, Bing Lu, Philip Yu, Zhi-Hua Zhou, Michael Steinbach, David Hand, Dan
Steinberg,
Top 10 algorithms in data mining,
Knowledge and Information Systems,
Volume 14, Number 1, January 2008, pages 1-37.

12

