#! /usr/bin/env python3 # def mortality ( ): #*****************************************************************************80 # ## mortality() tests mortality_simulation(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 12 January 2025 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'mortality():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test mortality_simulation().' ) mortality_cdf_plot ( ) mortality_count_plot ( ) mortality_expected_plot ( ) mortality_pdf_plot ( ) mortality_plus10_plot ( ) mortality_table ( ) mortality_this_year_plot ( ) mortality_to_die_plot ( ) # # Terminate. # print ( '' ) print ( 'mortality():' ) print ( ' Normal end of execution.' ) return def mortality_average_life (): #*****************************************************************************80 # ## mortality_average_life() estimates the average life span. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 11 February 2024 # # Author: # # John Burkardt # # Output: # # real combined_life, male_life, female life: the average life span for # the combined, male, and female populations. # import numpy as np age_death, combined_death, male_death, female_death = mortality_count ( ) combined_life = 0.0 male_life = 0.0 female_life = 0.0 age_max = len ( age_death ) for i in range ( 0, age_max ): years = age_death[i] + 0.5 combined_life = combined_life + years * combined_death[i] male_life = male_life + years * male_death[i] female_life = female_life + years * female_death[i] combined_life = combined_life / np.sum ( combined_death ) male_life = male_life / np.sum ( male_death ) female_life = female_life / np.sum ( female_death ) return combined_life, male_life, female_life def mortality_cdf (): #*****************************************************************************80 # ## mortality_cdf() determines mortality cumulative density function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import numpy as np # # Get the data. # age, combined, male, female = mortality_count ( ) # # Normalize. # combined = combined / np.sum ( combined ) male = male / np.sum ( male ) female = female / np.sum ( female ) # # Compute the CDF's as cumulative sums. # combined_cdf = np.cumsum ( combined ) male_cdf = np.cumsum ( male ) female_cdf = np.cumsum ( female ) return age, combined_cdf, male_cdf, female_cdf def mortality_cdf_plot (): #*****************************************************************************80 # ## mortality_cdf_plot() plots mortality cumulative density function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt # # Get the data. # age, combined_cdf, male_cdf, female_cdf = mortality_cdf ( ); # # Plot the data. # plt.clf ( ) plt.plot ( age, combined_cdf, 'k-', linewidth = 3 ) plt.plot ( age, male_cdf, 'b-', linewidth = 3 ) plt.plot ( age, female_cdf, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age at death -->' ) plt.ylabel ( '<-- Probability of death -->' ) plt.title ( 'Probability of death at or before given age, in 2007' ) plt.legend ( [ 'Combined', 'Male', 'Female' ] ) plt.grid ( True ) filename = 'mortality_cdf.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def mortality_count ( ): #*****************************************************************************80 # ## mortality_count() returns mortality counts. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # # Output: # # integer age(115): the age, in years, at death, from 0 to 114. # # integer combined(115), male(115), female(115): the number of deaths # combined, male, and female.. # import numpy as np data = np.array ( [ \ [ 0, 29138, 16293, 12845 ], \ [ 1, 1940, 1056, 884 ], \ [ 2, 1178, 665, 513 ], \ [ 3, 882, 501, 381 ], \ [ 4, 703, 412, 291 ], \ [ 5, 595, 345, 250 ], \ [ 6, 570, 314, 256 ], \ [ 7, 528, 297, 231 ], \ [ 8, 511, 281, 230 ], \ [ 9, 507, 282, 225 ], \ [ 10, 551, 307, 244 ], \ [ 11, 535, 323, 212 ], \ [ 12, 590, 347, 243 ], \ [ 13, 781, 462, 319 ], \ [ 14, 979, 627, 352 ], \ [ 15, 1372, 903, 469 ], \ [ 16, 2009, 1337, 672 ], \ [ 17, 2593, 1847, 746 ], \ [ 18, 3504, 2576, 928 ], \ [ 19, 3821, 2895, 926 ], \ [ 20, 3769, 2865, 904 ], \ [ 21, 4187, 3183, 1004 ], \ [ 22, 4309, 3335, 974 ], \ [ 23, 4113, 3109, 1004 ], \ [ 24, 4305, 3266, 1039 ], \ [ 25, 4129, 3074, 1055 ], \ [ 26, 4233, 3062, 1171 ], \ [ 27, 4226, 3081, 1145 ], \ [ 28, 4160, 2970, 1190 ], \ [ 29, 4183, 2920, 1263 ], \ [ 30, 4117, 2895, 1222 ], \ [ 31, 4102, 2820, 1282 ], \ [ 32, 4263, 2853, 1410 ], \ [ 33, 4339, 2928, 1411 ], \ [ 34, 4820, 3189, 1631 ], \ [ 35, 5309, 3420, 1889 ], \ [ 36, 5837, 3778, 2059 ], \ [ 37, 6255, 4066, 2189 ], \ [ 38, 6598, 4181, 2417 ], \ [ 39, 6882, 4310, 2572 ], \ [ 40, 7607, 4707, 2900 ], \ [ 41, 8475, 5326, 3149 ], \ [ 42, 9546, 6006, 3540 ], \ [ 43, 10932, 6773, 4159 ], \ [ 44, 12165, 7538, 4627 ], \ [ 45, 13071, 8145, 4926 ], \ [ 46, 14477, 8975, 5502 ], \ [ 47, 15643, 9494, 6149 ], \ [ 48, 16708, 10187, 6521 ], \ [ 49, 17839, 11103, 6736 ], \ [ 50, 19360, 11935, 7425 ], \ [ 51, 20623, 12752, 7871 ], \ [ 52, 21352, 13327, 8025 ], \ [ 53, 22451, 14169, 8282 ], \ [ 54, 23162, 14369, 8793 ], \ [ 55, 24254, 15224, 9030 ], \ [ 56, 24955, 15509, 9446 ], \ [ 57, 26279, 16272, 10007 ], \ [ 58, 27504, 16828, 10676 ], \ [ 59, 29466, 17757, 11709 ], \ [ 60, 32041, 19256, 12785 ], \ [ 61, 27403, 16407, 10996 ], \ [ 62, 28804, 17045, 11759 ], \ [ 63, 31648, 18821, 12827 ], \ [ 64, 34756, 20499, 14257 ], \ [ 65, 33801, 19641, 14160 ], \ [ 66, 33496, 19431, 14065 ], \ [ 67, 34281, 19643, 14638 ], \ [ 68, 35602, 20371, 15231 ], \ [ 69, 37811, 21406, 16405 ], \ [ 70, 38341, 21522, 16819 ], \ [ 71, 40687, 22715, 17972 ], \ [ 72, 43613, 23861, 19752 ], \ [ 73, 44334, 24272, 20062 ], \ [ 74, 47272, 25482, 21790 ], \ [ 75, 51055, 27202, 23853 ], \ [ 76, 54369, 28631, 25738 ], \ [ 77, 58251, 30303, 27948 ], \ [ 78, 60579, 30986, 29593 ], \ [ 79, 64775, 32547, 32228 ], \ [ 80, 67786, 33696, 34090 ], \ [ 81, 70562, 34094, 36468 ], \ [ 82, 73985, 34585, 39400 ], \ [ 83, 75459, 34565, 40894 ], \ [ 84, 75861, 34194, 41667 ], \ [ 85, 77832, 33889, 43943 ], \ [ 86, 77066, 32478, 44588 ], \ [ 87, 73003, 29683, 43320 ], \ [ 88, 66968, 25889, 41079 ], \ [ 89, 64355, 24175, 40180 ], \ [ 90, 58928, 21012, 37916 ], \ [ 91, 54036, 18120, 35916 ], \ [ 92, 48749, 15483, 33266 ], \ [ 93, 42448, 12787, 29661 ], \ [ 94, 36019, 10075, 25944 ], \ [ 95, 29592, 7834, 21758 ], \ [ 96, 22912, 5445, 17467 ], \ [ 97, 18237, 4072, 14165 ], \ [ 98, 13730, 2812, 10918 ], \ [ 99, 10006, 1939, 8067 ], \ [ 100, 6952, 1188, 5764 ], \ [ 101, 4868, 827, 4041 ], \ [ 102, 3105, 484, 2621 ], \ [ 103, 1995, 274, 1721 ], \ [ 104, 1222, 196, 1026 ], \ [ 105, 747, 86, 661 ], \ [ 106, 411, 67, 344 ], \ [ 107, 227, 19, 208 ], \ [ 108, 114, 15, 99 ], \ [ 109, 63, 8, 55 ], \ [ 110, 29, 5, 24 ], \ [ 111, 17, 2, 15 ], \ [ 112, 9, 2, 7 ], \ [ 113, 4, 0, 4 ], \ [ 114, 1, 0, 1 ] ] ) age = data[:,0] combined = data[:,1] male = data[:,2] female = data[:,3] return age, combined, male, female def mortality_count_plot (): #*****************************************************************************80 # ## mortality_count_plot() plots mortality counts. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt print ( '' ) print ( 'mortality_count_plot():' ) print ( ' mortality_count_plot() plots mortality counts.' ) # # Get the data. # age, combined, male, female = mortality_count ( ) # # Create the plot. # plt.clf ( ) plt.plot ( age, combined, 'k-', linewidth = 3 ) plt.plot ( age, male, 'b-', linewidth = 3 ) plt.plot ( age, female, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age at death -->' ) plt.ylabel ( '<-- Number of deaths -->' ) plt.title ( 'mortality counts: 2007' ) plt.legend ( [ 'combined', 'male', 'female' ] ) plt.grid ( True ) filename = 'mortality_count.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def mortality_expected_plot (): #*****************************************************************************80 # ## mortality_expected_plot() plots expected mortality. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt import numpy as np # # Get the data. # age, combined, male, female = mortality_count ( ) # # Get sums for normalization. # n = len ( age ) et = np.NAN * np.ones ( n ) em = np.NAN * np.ones ( n ) ef = np.NAN * np.ones ( n ) for i in range ( 0, n ): if ( 0 < np.sum ( combined[i:n] ) ): et[i] = np.dot ( age[i:n], combined[i:n] ) / np.sum ( combined[i:n] ) if ( 0 < np.sum ( male[i:n] ) ): em[i] = np.dot ( age[i:n], male[i:n] ) / np.sum ( male[i:n] ) if ( 0 < np.sum ( female[i:n] ) ): ef[i] = np.dot ( age[i:n], female[i:n] ) / np.sum ( female[i:n] ) # # Make the plot. # plt.clf ( ) plt.plot ( age, et, 'k-', linewidth = 3 ) plt.plot ( age, em, 'b-', linewidth = 3 ) plt.plot ( age, ef, 'r-', linewidth = 3 ) plt.plot ( age, age, 'g-', linewidth = 3 ) plt.xlabel ( '<-- Age at death -->' ) plt.ylabel ( '<-- Number of deaths -->' ) plt.title ( 'Life expectancy by age, in 2007' ) plt.grid ( True ) plt.legend ( [ 'Combined', 'Male', 'Female', 'Age if you die now', 'Location' ] ) filename = 'mortality_expected.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def mortality_pdf (): #*****************************************************************************80 # ## mortality_pdf() computes the mortality probability density function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import numpy as np age, combined, male, female = mortality_count ( ) # # Normalize the data. # combined_pdf = combined / np.sum ( combined ) male_pdf = male / np.sum ( male ) female_pdf = female / np.sum ( female ) return age, combined_pdf, male_pdf, female_pdf def mortality_pdf_plot (): #*****************************************************************************80 # ## mortality_pdf_plot() plots mortality probability density function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt age, combined_pdf, male_pdf, female_pdf = mortality_pdf () # # Plot the data. # plt.clf ( ) plt.plot ( age, combined_pdf, 'k-', linewidth = 3 ) plt.plot ( age, male_pdf, 'b-', linewidth = 3 ) plt.plot ( age, female_pdf, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age at death -->' ) plt.ylabel ( '<-- Probability of death -->' ) plt.title ( 'Probability of deaths for each age, in 2007' ) plt.legend ( [ 'Combined', 'Male', 'Female' ] ) plt.grid ( True ) filename = 'mortality_pdf.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def mortality_plus10_plot (): #*****************************************************************************80 # ## mortality_plus10_plot() plots the chance of living at least 10 more years. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 February 2019 # # Author: # # John Burkardt # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'mortality_plus10_plot():' ) print ( ' Plot the probability of living at least 10 more years.' ) # # Get the data. # age, combined, male, female = mortality_count ( ) n = len ( age ) # # Compute the combined, male, and female death counts by summing the deaths. # combined_to_die = np.sum ( combined ) male_to_die = np.sum ( male ) female_to_die = np.sum ( female ) # # The number alive at age K is the population minus the number who have died # up to that age. # (Mild off-by-one error here.) # combined_alive = combined_to_die - np.cumsum ( combined ) male_alive = male_to_die - np.cumsum ( male ) female_alive = female_to_die - np.cumsum ( female ) # # The chance of being alive 10 years from now is the ratio between # the number of people like you alive in 10 years to the number of people # like you alive right now. # combined_10 = np.zeros ( n ) male_10 = np.zeros ( n ) female_10 = np.zeros ( n ) combined_10[0:n-10] = combined_alive[10:n] / combined_alive[0:n-10] male_10[0:n-10] = male_alive[10:n] / male_alive[0:n-10] female_10[0:n-10] = female_alive[10:n] / female_alive[0:n-10] # # Draw the plot. # plt.clf ( ) plt.plot ( age, combined_10, 'k-', linewidth = 3 ) plt.plot ( age, male_10, 'b-', linewidth = 3 ) plt.plot ( age, female_10, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age now -->' ) plt.ylabel ( '<-- Probability -->' ) plt.title ( 'Probability of at least 10 more years of life' ) plt.legend ( [ 'Combined', 'Male', 'Female' ] ) plt.grid ( True ) filename = 'mortality_plus10.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def mortality_table ( ): #*****************************************************************************80 # ## mortality_table() constructs a mortality table(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 February 2024 # # Author: # # John Burkardt # import numpy as np print ( '' ) print ( 'mortality_table():' ) print ( ' Create a mortality table' ) age, combined, male, female = mortality_count ( ) age, combined_pdf, male_pdf, female_pdf = mortality_pdf ( ) age, combined_cdf, male_cdf, female_cdf = mortality_cdf ( ) age, combined_this_year, male_this_year, female_this_year = \ mortality_this_year ( ) combined_life, male_life, female_life = mortality_average_life ( ) n = len ( age ) print ( '' ) print ( ' COMBINED STATISTICS = Male + Female' ) print ( ' Average life span = ', combined_life ) print ( '' ) print ( ' Bracket Pop Deaths PDF CDF This Year' ) print ( '' ) pop = np.sum ( combined ) for i in range ( 0, n ): print ( ' [%3d:%3d] %7d %7d %8.4f %8.4f %8.4f' \ % ( age[i], age[i]+1, pop, combined[i], combined_pdf[i], combined_cdf[i], \ combined_this_year[i] ) ) pop = pop - combined[i] print ( '' ) print ( ' MALE STATISTICS' ) print ( ' Average life span = ', male_life ) print ( '' ) print ( ' Bracket Pop Deaths PDF CDF This Year' ) print ( '' ) pop = np.sum ( male ) for i in range ( 0, n ): print ( ' [%3d:%3d] %7d %7d %8.4f %8.4f %8.4f' \ % ( age[i], age[i]+1, pop, male[i], male_pdf[i], male_cdf[i], \ male_this_year[i] ) ) pop = pop - male[i] print ( '' ) print ( ' FEMALE STATISTICS' ) print ( ' Average life span = ', female_life ) print ( '' ) print ( ' Bracket Pop Deaths PDF CDF This Year' ) print ( '' ) pop = np.sum ( female ) for i in range ( 0, n ): print ( ' [%3d:%3d] %7d %7d %8.4f %8.4f %8.4f' \ % ( age[i], age[i]+1, pop, female[i], female_pdf[i], female_cdf[i], \ female_this_year[i] ) ) pop = pop - female[i] return def mortality_this_year ( ): #*****************************************************************************80 # ## mortality_this_year() returns probability of death this year. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 February 2024 # # Author: # # John Burkardt # # Output: # # integer age(115): the age_brackets, in years, from 0:1 to 114:115. # # real combined_this_year(115), male_this_year(115), female_this_year(115): # the probability that a person alive at the beginning of the age bracket # will die by the end of that age bracket. # import numpy as np age, combined, male, female = mortality_count ( ) n = len ( age ) combined_this_year = np.NAN * np.ones ( n ) pop_this_year = np.sum ( combined ) for i in range ( 0, n ): if ( 0 < pop_this_year ): combined_this_year[i] = combined[i] / pop_this_year pop_this_year = pop_this_year - combined[i] male_this_year = np.NAN * np.ones ( n ) pop_this_year = np.sum ( male ) for i in range ( 0, n ): if ( 0 < pop_this_year ): male_this_year[i] = male[i] / pop_this_year pop_this_year = pop_this_year - male[i] female_this_year = np.NAN * np.ones ( n ) pop_this_year = np.sum ( female ) for i in range ( 0, n ): if ( 0 < pop_this_year ): female_this_year[i] = female[i] / pop_this_year pop_this_year = pop_this_year - female[i] return age, combined_this_year, male_this_year, female_this_year def mortality_this_year_plot (): #*****************************************************************************80 # ## mortality_this_year_plot() plots mortality probability density function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt age, combined_this_year, male_this_year, female_this_year = \ mortality_this_year ( ) # # Plot the data. # plt.clf ( ) plt.plot ( age, combined_this_year, 'k-', linewidth = 3 ) plt.plot ( age, male_this_year, 'b-', linewidth = 3 ) plt.plot ( age, female_this_year, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age bracket -->' ) plt.ylabel ( '<-- Probability of death this year -->' ) plt.title ( 'Probability of death this year for each age, in 2007' ) plt.legend ( [ 'Combined', 'Male', 'Female' ] ) plt.grid ( True ) filename = 'mortality_this_year.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ); return def mortality_to_die (): #*****************************************************************************80 # ## mortality_to_die() computes the per bracket "to die" function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 11 February 2024 # # Author: # # John Burkardt # # Output: # # integer age_to_die[115]: age bracket limits from 0 to 114. # # combined_to_die[115]: combined_to_die[i] is the number of people who will # die this year who are at least age_to_die[i] or older. # # male_to_die[115]: male_to_die[i] is the number of males who will # die this year who are at least age_to_die[i] or older. # # female_to_die[115]: female_to_die[i] is the number of females who will # die this year who are at least age_to_die[i] or older. # import numpy as np age, combined_death, male_death, female_death = mortality_count ( ) n = len ( age ) # # This bracket's "to die" minus this year's deaths gives next bracket's "to die". # age_to_die = np.linspace ( 0, n, n + 1 ) combined_to_die = np.zeros ( n + 1 ) combined_to_die[0] = np.sum ( combined_death ) for i in range ( 1, n + 1 ): combined_to_die[i] = combined_to_die[i-1] - combined_death[i-1] male_to_die = np.zeros ( n + 1 ) male_to_die[0] = np.sum ( male_death ) for i in range ( 1, n + 1 ): male_to_die[i] = male_to_die[i-1] - male_death[i-1] female_to_die = np.zeros ( n + 1 ) female_to_die[0] = np.sum ( female_death ) for i in range ( 1, n + 1 ): female_to_die[i] = female_to_die[i-1] - female_death[i-1] return age_to_die, combined_to_die, male_to_die, female_to_die def mortality_to_die_plot (): #*****************************************************************************80 # ## mortality_to_die_plot() plots population. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 February 2024 # # Author: # # John Burkardt # import matplotlib.pyplot as plt print ( '' ) print ( 'mortality_to_die_plot():' ) print ( ' mortality_to_die_plot() plots the per bracket "to die" function.' ) # # Get the data. # age_to_die, combined_to_die, male_to_die, female_to_die = mortality_to_die ( ) # # Create the plot. # plt.clf ( ) plt.plot ( age_to_die, combined_to_die, 'k-', linewidth = 3 ) plt.plot ( age_to_die, male_to_die, 'b-', linewidth = 3 ) plt.plot ( age_to_die, female_to_die, 'r-', linewidth = 3 ) plt.xlabel ( '<-- Age -->' ) plt.ylabel ( '<-- Die this age -->' ) plt.title ( 'To die function: 2007' ) plt.legend ( [ 'combined', 'male', 'female' ] ) plt.grid ( True ) filename = 'mortality_to_die.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) mortality ( ) timestamp ( )