
The Stream Function
MATH1091: ODE methods for a reaction diffusion equation

http://people.sc.fsu.edu/∼jburkardt/classes/math1091 2020/stream/stream.pdf

Stream lines reveal the paths of fluid flow.

The Stream Function

The flow of an incompressible fluid in a 2D region, which is usually described by a vector field (u,v),
can also be represented by stream function ψ(x, y).

1 The continuity equation

At a given moment in time, the flow of a fluid in a 2D region can be represented by a velocity field, which
we might represent as the vector field ~u(x, y) or as a pair of horizontal and vertical velocity components
(u(x, y), v(x, y)). In general, the law of mass conservation must be applied to the mass velocity, that is, to
the product of mass and velocity. But if the fluid is incompressible, then the mass conservation law can be
applied directly to the velocity field itself, and has the form:

∇(u, v) ≡ ∂u

∂x
+
∂v

∂y
= 0 (Continuity equation)

This is generally referred to as the continuity equation since it can be interpreted to say that, at any point,
the flow coming in must equal the flow going out. The operatator ∇ is computing the divergence of the
vector field, and so the continuity equation is often stated as: “The divergence of an incompressible flow is
zero everywhere.”

2 Some sample flows

We will start by considering some simple examples of velocity flow fields:

• channel: parabolic flow through a straight channel in [0, 5]× [−1,+1];
• corner: flow that turns around a corner in [0, 1]× [0, 1];
• shear: layers of flow at different speeds in [0, 1]× [0, 1];
• vortex: flow that rotates around a center in [−1, 1]× [−1, 1];

1

Each of the flows will be described using data in matrices. To discretize a flow, the user specifies nr and
nc, the number of rows and columns in these matrices, then calling an xy function for the node coordinates,
followed by a uv function for the velocity field. The MATLAB command quiver() or the web page function
arrows() can be used to display the flow.

For instance, for the shear flow, we might use these commands:

nr = 11 ;
nc = 11 ;
[X, Y] = xy shear (nr , nc) ;
[U, V] = uv shear (X, Y) ;
arrows (X, Y, U, V) ;

Listing 1: Set up the shear flow.

3 Exercise #1: Set up and view the example flows

Create a MATLAB file exercise1.m which sets up and displays each of the four example flows. Because the
channel region is not square, you might use nr=9, nc = 21 to get a better sense of the flow. For the other
regions, you can use nr=nc=11.

If you call the arrows() function, you will see plots of both the velocity, and the velocity direction field. This
can be helpful in cases where the velocities vary greatly in magnitude, so that the plot returned by quiver()
would not show all the information clearly.

4 Computational representation of flow

The example flow functions create nr×nc arrays X, Y, U, V to represent the flow. There are many ways to
store 2D data in an array, and unfortunately, every method can seem sensible, but then becomes confusing
in certain applications.

For these example flows, I have chosen to set up the arrays so that the location of a value in the array
roughly corresponds to its physical location. In particular, if nr = 3 and nc = 4, and we are working in the
unit square, the values in the node coordinate arrays X and Y would be

i = 1 (0.0, 1.0) (0.3, 1.0) (0.6, 1.0) (1.0, 1.0)

i = 2 (0.0, 0.5) (0.3, 0.5) (0.6, 0.5) (1.0, 0.5)

i = 3 (0.0, 0.0) (0.3, 0.0) (0.6, 0.0) (1.0, 0.0)

j = 1 j = 2 j = 3 j = 4

and the same ordering is used for the velocity arrays U and V.

Question: Suppose you want to estimate a derivative of U at the node with (i, j) coordinates (2,3). How
would you express:

1. a forward X difference?

2. a centered X difference?

3. a backward X difference?

4. a forward Y difference?

5. a centered Y difference?

6. a backward Y difference?

Answers:

2

1. ∂U
∂X ≈

U(2,4)−U(2,3)
dx

2. ∂U
∂X ≈

U(2,4)−U(2,2)
2dx

3. ∂U
∂X ≈

U(2,3)−U(2,2)
dy

4. ∂U
∂Y ≈

U(1,3)−U(2,3)
dy

5. ∂U
∂Y ≈

U(1,3)−U(3,3)
2dy

6. ∂U
∂Y ≈

U(2,3)−U(3,3)
dy

There are at least two surprises here. To increase the x coordinate (which we think of as the first coordinate),
we must increase the j index (which is the second (i,j) coordinate). To increase the y coordinate, we must
decrease the i coordinate, because y values increase going “up” the array, but row indices i decrease when
we go “up”. You don’t need to memorize these rules, but just be aware that any time you try to express a
difference using array data, you are going to be confused at first, and if you can’t figure it out, you should
come back and refer to these notes.

If you have the X, Y, U, V data for a flow, you can check the continuity equation. To do this, at every
node (i, j), you want to approximate the divergence of the vector field. At any interior node, we can use
centered differences. But if a node is on the boundary, then we can probably only use a forward or backward
difference to estimate a derivative. In the next exercise, we will try to compute the divergence of each of our
example flows.

5 Exercise #2: Test the continuity equation

Create a MATLAB file divergence.m by copying the file skeleton2.m and finishing it.

This function can be used to test the continuity equation for a given flow. This function will use a combination
of backward, forward, and centered differences to estimate du

dx and dv
dx and then add them to get the divergence.

The file is missing a few lines, which are indicated by question marks. You need to replace the question
marks by the appropriate finite difference estimates:

function D = divergence (X, Y, U, V)
[nr , nc] = s ize (U) ;

dx = X(1 ,2) − X(1 ,1) ;
dy = Y(1 ,1) − Y(2 ,1) ;

for c = 1 : nc
i f (c == 1)

dUdX(1 : nr , c) = (U(1 : nr , c+1) − U(1 : nr , c)) / dx ;
e l s e i f (c < nc)

dUdX(1 : nr , c) = ?
else

dUdX(1 : nr , c) = ?
end

end

for r = 1 : nr
i f (r == 1)

dVdY(r , 1 : nc) = ?
e l s e i f (r < nr)

dVdY(r , 1 : nc) = ?
else

dVdY(r , 1 : nc) = ?
end

end

D = dUdX + dVdY

3

Fill in the missing formulas. Then test your code on each of the example flows, and print the value of norm(D.
Do you get the expected value?

6 The stream function

Any pair of velocity component functions u(x, y) and v(x, y) that satisfies the continuity equation will
represent a legitimate incompressible fluid flow. We will now look at a simple way to manufacture such
velocity fields automatically, starting with a scalar function ψ(x, y) whose only requirement is that it have
continuous first and second partial derivatives. If a flow is derived in this way, ψ(x, y) is called the stream
function associated with the flow.

To see how the stream function can have this property, let us start with a given ψ(x, y) and define

u(x, y) =
∂ψ

∂y

v(x, y) = −∂ψ
∂x

In that case, we can verify that

∇(u, v) ≡ ∂u

∂x
+
∂v

∂y
=

∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0

so any velocity field defined in this way represents an incompressible flow field.

For each of our example flows, it is possible to determine a corresponding stream function, and these functions
are available on the web page. Thus, for example, to compute and display the stream function for the corner
flow, we could write

nr = 11 ;
nc = 11 ;
[X, Y] = xy corner (nr , nc) ;
PSI = p s i c o r n e r (X, Y) ;
contour f (X, Y, PSI) ;

Listing 2: Compute and display ψ(x y) for the corner flow.

7 Exercise #3: Compute the velocity field from ψ(x, y)

Create the file uv from psi.m by copying skeleton3.m and modifying it.

This function will use a combination of backward, forward, and centered differences, applied to the stream
function ψ, in order to estimate the velocity components u and v. Where possible, derivatives should be
estimated with centered differences, but for nodes on the boundary, it may be necessary to use forward or
backward differences. The determination of how to compute the difference is similar to what you did in the
divergence function.

The current version of the file is missing some information, indicated by question marks, which you should
replace by the appropriate finite difference estimates:

function [U, V] = uv f rom ps i (X, Y, PSI)

[nr , nc] = s ize (PSI) ;

dx = X(1 ,2) − X(1 ,1) ;

4

dy = Y(1 ,1) − Y(2 ,1) ;

U = zeros (nr , nc) ;
V = zeros (nr , nc) ;

for r = 1 : nr
i f (r == 1)

U(r , 1 : nc) = ?
e l s e i f (r < nr)

U(r , 1 : nc) = ?
else

U(r , 1 : nc) = ?
end

end

for c = 1 : nc
i f (c == 1)

V(1 : nr , c) = ?
e l s e i f (c < nc)

V(1 : nr , c) = − (PSI (1 : nr , c+1) − PSI (1 : nr , c−1)) / dx / 2 . 0 ;
else

V(1 : nr , c) = ?
end

end

figure () ;
hold (’ on ’) ;
contour (X, Y, PSI) ;
quiver (X, Y, U, V) ;
hold (’ o f f ’) ;

Listing 3: Determine velocity from stream function.

Fill in the missing formulas. Then test your code on each of the example flows. As designed, the code
automatically plots the flow field and the stream function together. You may notice a relationship between
the velocity vectors and the stream function contour lines.

8 Computing ψ from the velocity

Now suppose that have velocity component functions u and v, and we want to determine the stream function
ψ(x, y) so that

u(x, y) =
∂ψ

∂y

v(x, y) = −∂ψ
∂x

Now ψ(x, y) is unique up to an integration constant, so we can choose some point (x0, y0) for which
ψ(x0, y0) = 0. Having done this, we can now evaluate ψ(x1, y1) using integration along a path from (x0, y0)
to (x0, y1), and then from (x0, y1) to (x1, y1):

ψ(x1, y1) =

∫ y1

y0

u(x0, y) dy −
∫ x1

x0

v(x1, y0) dx

For our problems, it is natural to choose the reference point (x0, y0) as the point of minimum x and y, which
occurs at row nr and column 1. To estimate the value of ψ(x, y) at location (r, c), we must integrate u(x, y)
up from row nr to row r, and then integrate −v(x, y) to the right, from column 1 to column c.

5

9 Exercise #4: Compute ψ from a velocity field

Create the file psi from uv.mby copying skeleton4.m and modifying it.

This function will repeatedly use the trapezoid rule to estimate ψ(x, y) at every node. Recall that the
trapezoid rule averages the value of the integrand at the beginning and end of an interval, times the interval
length.

Rather than make a separate calculation for every node, we will do our integration in steps:

• the value ψ(nr, 1) is 0.
• for r = nr down to 1...

– if r == nr, set ψ(r, 1) = 0, else ψ(r, 1) = ψ(r + 1, 1)+integral of u from y(r + 1) to y(r);
– for c = 2 : nc, ψ(r, c) = ψ(r, c− 1)+integral of −v from x(c− 1) to x(c);

Create your code by filling in the missing information that is indicated by question marks:

function PSI = ps i f rom uv (X, Y, U, V)

[nr , nc] = s ize (U) ;

dx = X(1 ,2) − X(1 ,1) ;
dy = Y(1 ,1) − Y(2 ,1) ;

PSI = zeros (nr , nc) ;

for r = nr : −1 : 1

i f (r == nr)
PSI (r , 1) = 0 . 0 ;

else
PSI (r , 1) = PSI (r +1 ,1) + ?

end

for c = 2 : nc
PSI (r , c) = PSI (r , c−1) − ?

end

end

Listing 4: Outline of code for computing stream function from velocities.

Try your code on each of the example flows. Contour plots of your computed value of PSI should match
the plots you made earlier in exercise 3.

10 Streamline/vorticity equations

The stream function can be used in a program that computes a time dependent fluid flow, but in that case
we need an additional variable, called the vorticity, which measures the rotating part of the flow. The
vorticity is usually symbolized by ω(x, y), and is related to the velocity by the formula

ω(x, y) =
∂v

∂x
− ∂u

∂y

If we are given the values of the vorticity field, then the stream function can be determined by

∇2ψ(x, y) = ω(x, y)

6

Just as with the heat equation, where we also dealt with the ∇2 operator, we generally need boundary
conditions on ψ in order to make the solution unique.

To start a time-dependent fluid flow problem at time t0, we assume we are given the initial values of the
vorticity field, so that we can solve for the corresponding stream function. Now, assuming we have ω(x, y, t0)
and ψ(x, y, t0) at the current time, we can estimate the vorticity at the next time t1 = t0 + dt by using a
discretized version of the following differential equation:

∂ω

∂t
= −∂ψ

∂x

∂ω

∂y
+
∂ψ

∂y

∂ω

∂x
+ ν

∂2ω

∂x2
+ ν

∂2ω

∂y2

where ν is a physical constant known as the viscosity. Once we have the new ω(x, y, t1), we can again solve
for the corresponding ψ(x, y, t1), and continue marching forward in time.

11 Exercise #5: A streamline/vorticity code

The file skeleton5.m contains an almost complete code for taking 8 time steps in a fluid flow problem, using
the stream function and vorticity formulation. The stream function is represented by the variable P and
vorticity by O. The code defines quantities C, S, N, E, W which are lists of the indices necessary to form

all the finite difference estimates of derivatives in the differential equation. For instance, the quantity ν ∂2ω
∂y2

is to be approximated by (nu / dy^2) * (O(N) - 2.0 * O(C) + O(S)).

Copy skeleton5.m, and go to the line where the forward Euler approximation is being set up, which currently
looks like this:

O(C) = O(C) + dt ∗ (
− dP/dX ∗ dO/dY
+ dP/dY ∗ dO/dX
+ nu ∗ dˆ2 O/dXˆ2
+ nu ∗ dˆ2 O/dYˆ2
) ;

Listing 5: Euler approximation to be filled in.

Replace each mathematical expression by the appropriate finite difference quantity. Run the code. It should
compute 8 time steps, pausing after each step to display the current plots of ω and ψ. If your code runs
correctly, you should see the vorticity plot start as a tall thin oval shape, which then begins to turn and
twist gradually.

12 Homework: Turn raw fluid data into a stream function plot

Create a MATLAB file hw8.m.

From the web page, get the two data files xy inout.txt and uv inout.txt. The “inout” flow problem was solved
on a 41× 41 grid = 1681 nodes. The file xy inout.txt consists of 1681 lines; the k-th line specifies the (x, y)
coordinates of the k-th node. Similarly, the k-th line of uv inout.txt lists the (u, v) velocity values of the
k-th node. The ordering of the nodes is similar to what we have seen in the example flow problems, and is
suggested by this diagram:

1641 1642 1643 1644 ... 1680 1681

....

83 84 85 85 ... 122 123

42 43 44 45 ... 81 82

1 2 3 4 ... 40 41

7

In other words, the first node has the lowest values of X and Y, the last node has the highest values, and in
between the nodes are listed from left to right, and bottom to top.

Your program should use the MATLAB statement result=load(filename) to read the two files of data.
For instance, read the node coordinates and separate them by the commands:

xy = load (’ xy inout . txt ’) ;
x = xy (: , 1) ;
y = xy (: , 2) ;

Similarly, read the velocity data as uv and split it into two vectors u andv.

Now we need to change these items from vectors to matrices. Use the reshape() command to create a
matrix X from the vector x, and similarly create Y, U, V.

Then call your function psi from uv() to compute the stream function for this data.

Use contour() or contourf() to plot your stream function, and save this image as the file hw8.png.

Send me the plot hw8.png at jvb25@pitt.edu. I would like to see your work by Friday, 26 June 2020.

8

