EXAMPLE 3.7.

The following is a simple reaction-diffusion model with solution - a spiral rotating around the center of the spatial domain (see e.g., [2, page 301] and the reference therein).

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\Delta u+\frac{1}{\varepsilon} u(1-u)\left(u-\frac{v+\beta}{\alpha}\right), \\
\frac{\partial v}{\partial t}=\delta \Delta v+u-v,
\end{array}\right. \\
& \left\{\begin{array}{l}
u_{0}(x, y, 0)= \begin{cases}0, & x<40 \\
1, & x \geq 0 \\
0, & y<40\end{cases} \\
v_{0}(x, y, 0)= \begin{cases}\frac{1}{2} \alpha, & y \geq 0\end{cases} \\
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0,
\end{array} \quad\right. \text { (I.C.) } \tag{I.C.}
\end{align*}
$$

where the parameters are:

$$
\delta=0, \quad \varepsilon=0.002, \quad \alpha=0.25, \quad \beta=0.001
$$

On a fixed spatial grid of $400 \times 400(h=0.2)$, plot the solu-
 tions at $t=10$ obtained with a finite difference 5-point Laplace discretization, and respectively with the 9-point Laplacian. Observe that the 5-point Laplacian exhibits a spiral of a 'square' form, aligned to the grid, while the 9-point Laplacian solution gives a 'round' spiral. With these parameters, the PDE is not well resolved. When finer grids are used, the differene between the results becomes smaller, both solutions converging to the exact solution.

REFERENCES

[1] J. Burkardt and C. Trenchea, Refactorization of the midpoint rule, Applied Mathematics Letters, (2020), p. 106438.
[2] W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, vol. 33 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2003.
[3] R. E. Lynch, Fundamental solutions of nine-point discrete Laplacians, vol. 10, 1992, pp. 325-334. A Festschrift to honor Professor Garrett Birkhoff on his eightieth birthday.

