
A spiral reaction-diffusion solution
MATH1091: ODE methods for a reaction diffusion equation

http://people.sc.fsu.edu/∼jburkardt/classes/math1091 2020/spiral/spiral.pdf

A reaction of confusion to a spiral solution.

A reaction diffusion equation

Reaction-diffusion equations are differential equations that can model processes that involve chemical
reactions, biochemical processes, pattern formation, and the separation of a mixture of two liquids.
We will see several ways of approximating the Laplacian, which models diffusion, and a variety of
different equations with surprising behaviors.

1 Estimating the Laplacian on a periodic domain

The equation for the variation in heat was expressed in terms of the negative Laplacian operator applied to
the solution:

∂u

∂t
= −∇2u = −∂

2u

∂x2
1D equation

∂u

∂t
= −∇2u = −∂

2u

∂x2
− ∂2u

∂y2
2D equation

Our heat equation typically came with boundary conditions, and so in our discrete computation, we never
had to approximate the Laplacian at a boundary node. Because we worked in the interior of the region, we
always had enough neighbors to apply our standard formula, involving three neighboring nodes in the 1D
case, or 5 nodes in the 2D case.

We are about to look at some problems where it is much more convenient to avoid the issue of boundary
conditions. One way to do this is to use the periodic boundary condition, to behave as though our grid
was part of a quilt involving infinitely many identical copies of the grid. Another way is to use the “zero
normal derivative” boundary condition, which mathematically says that the function u(x) is “flat” at the
boundary, that is, du

dx = 0. Computationally, we can enforce this by setting the boundary value as a copy of
its immediate neighbor.

1

To start with, we will look at cases where we treat the region periodically. Thus, a 1D region can be thought
of as a sort of circle, and a 2D region becomes what is known as a torus. Mathematically, this means that
boundary points on opposite ends of the region are regarded as a single point. One way to handle this
computationally, in the 1D case, is to start with a grid of nx points, and then remove the last point. Any
time you would want to reference that point, you use the value at x(1) instead.

2 Exercise #1: Approximate Laplacian on a 1D periodic domain

Copy the file skeleton1.m.

The main program defines a uniform grid of nx points on [0, 1]. It then removes the last grid point, leaving
a periodic grid of nxp = nx − 1 points. On that grid, it evaluates a function up and its Laplacian uxxp,

which in 1D is simply the value of d2u
dx2 .

Then, the code wants to call a function lp = laplacian circle(up,dx) which should use the values up

and dx to estimate the Laplacian. The code wants to compute the RMS norm ||uxxp − lp||. This is to be
done for several values of nx, which will presumably show that the RMS error decreases as nx increases.

Your task is to fill in the details of the function laplacian circle() so that it correctly estimates the Laplacian.
The only tricky matters to note are

• the number of points is nxp, not nx, because we dropped the value at x = 1;
• therefore the result vector lp should also have length nxp;
• the i-th value of lp wants to use the values of up at indices i−1, i, i+ 1. What must you do when i = 1

and when i = nxp?

When you run the program, you should see that the RMS error goes down in relationship to nx.

3 Exercise #2: Approximate Laplacian on a 2D periodic domain

Copy the file skeleton2.m.

This exercise repeats exercise #1, but now for the case of a 2D periodic domain.

In the previous examples of storing 2D data in an array, I tried a different convention, but that was just as
confusing as the usual way. So let’s assume that we have sample values of a quantity U at an nx× ny grid
of points, stored in an an nx× ny array with typical value U(i, j). We have already seen several times how
to approximate the laplacian using 5 values, assuming that nodes are uniformly spaced by dx and dy in the
x and y directions, and that i and j are away from the boundaries:

∇2U(i, j) ≈ lp(i, j) =
U(i+ 1, j)− 2U(i, j) + U(i− 1, j)

dx2
+
U(i, j + 1)− 2U(i, j) + U(i, j − 1)

dy2

Similar to exercise #1, this exercise defines a uniform periodic grid of nxp×nyp points, that is, nx−1×ny−1
points, on [0, 2]× [−1,+1]. On that periodic grid, it evaluates a function up and its Laplacian uxxp, which

is the value of ∂2u
∂x2 + ∂2u

∂y2 . Then, the code wants to call a function lp = laplacian5 torus(up,dx,dy) to
estimate the Laplacian.

Your task is to fill in the necessary details for the function �laplacian5 torus(). You want to estimate the
laplacian at every node in the region. Since the region is periodic, you will have to be careful when you are
working with points on the boundary. For example, to compute

• lp(1,j), instead of U(1-1,j), you want to use U(nxp,j);
• lp(i,nyp), instead of U(i,nyp+1), you want to use U(i,1), and so on;

2

Just as in exercise #1, the code will compute the RMS difference between the exact laplacian and your
estimate for a number of different grid sizes. If things are working correctly, you should see this difference
decrease in a natural way.

4 Reaction diffusion equations

A reaction-diffusion equation is a mathematical model of a system with a spatially varying concentration
of one or more substances. At each point, the given substances may undergo a reaction that changes their
concentration. Moreover, a diffusion process means that the concentration at each point is also tends to
match the average concentration at nearby points.

Typically, the concentrations are given in relative terms, with values between 0 and 1. When there is a single
substance, the corresponding differential equation will have the form

∂u

∂t
= ν∇2u+ f(u)

where the nonnegative parameter ν is the diffusion coefficient, and f(u) is the reaction term.

Fisher’s equation is an example of a reaction-diffusion equation involving one space dimension x and one
concentration variable u:

∂u

∂t
= ν∇2u+ u(1− u)

Imagine that ν is 0 for the moment, and focus on the reaction term. First we notice that this term is 0 if
u = 0 or u = 1. This means that a concentration of exactly 0 or 1 would have a zero time derivative; that
is, it would never change. However, for 0 < u < 1, the reaction term is strictly positive, driving the value of
u to increase. This means that the reaction term essentially forces all nonzero u values to move to 1.

Now let’s “turn on” the diffusion term. Its effect is to smooth out variations in u. In fact, the discretized
version of this term pushes u towards the average of its two neighbors. How does this affect the behavior of
the solution? Without diffusion, we can see that a zero value of u will stay zero forever. But with diffusion
turned on, it the zero value has a positive neighbor, then this will push it, ever so slightly, towards also
having a positive value. Once that happens, it will be forced to gradually ascend to 1.

This suggests that, as long as 0 < ν, and as long as we have any nonzero value of u in our initial condition,
the eventual solution of the Fisher equation will be the constant solution u(x) = 1. In the following exercise,
we will set up this equation and verify these claims.

5 Exercise #3: The Fisher 1D reaction-diffusion equation

Copy the file skeleton3.m, which sets up most of the Fisher equation.

Inside the time loop, the Euler step is written as follows:

uxxp = l a p l a c i a n c i r c l e (up , dx) ;
dudt = ?
up = up + dt ∗ dudt ;

Listing 1: Euler step for Fisher equation.

Add your laplacian circle() function so that you can compute the laplacian, and replace the question
mark by the discretized Fisher equation.

Run your program with the values ν = 0, 0.001, 1.0. Do you see the effect that the diffusion term has on the
results?

3

6 The Allen-Cahn 1D reaction diffusion equation

A metallic ore may actually comprise a mixture of two distinct metals. When the ore is refined by heating,
the liquid will at first consist of many small separate drops of either metal, but as time progresses, droplets
of the same type will tend to merge, so that the fluid organizes itself into large regions of the same type,
with thin layers of mixed type separating any two regions.

The Allen-Cahn equation can simulate this physical behavior. By tradition, the variable u is allowed to
range −1 ≤ u ≤ +1, with -1 or +1 indicating a pure region, while intermediate values indicate a mixed
state. Unlike the Fisher equation, we are told to expect that between regions of u = +1 and u = −1, there
may be a thin boundary layer with intermediate values of u, and this boundary layer will not necessarily
disappear.

The version of the equation that we are interested in is:

∂u

∂t
= ν∇2u− u(1− u2)

2 ξ

The equations include a parameter ξ, or xi which determines how thick the boundary layer will be. Small
values of ξ will allow for a solution with more closely packed alternating regions; larger values will force such
regions to disappear or to spread away from each other.

A larger value of the diffusion coefficient ν or nu will tend to quickly smear out the irregularities in the initial
condition, and will also tend to discourage “thin” regions.

Our version of the equation will not use periodic boundary conditions. Instead, it will use the “zero Neumann”
condition: ∂u

∂n = 0. We will implement this by setting u(1)← u(2) and u(nx)← u(nx− 1). This will affect
how we deal with the computation of the Laplacian.

7 Exercise #4: The Allen-Cahn 1D reaction diffusion equation

Copy the file skeleton4.m which contains most of the code needed to solve the Allen-Cahn equation.

Inside the time loop, the Euler step is written as follows:

uxxp = l a p l a c i a n i n t e r v a l (u , dx) ;
dudt = ?
u = u + dt ∗ dudt ;

Listing 2: Euler step for Allen-Cahn equation.

Create your laplacian interval() function by copying your laplacian circle() function. Simply set
the first and last component of the laplacian to zero (it’s someone else’s problem now, that is, the boundary
conditions will be used to set u(1) and u(nx).) Since we are skipping the first and last nodes, your loop to
compute the laplacian can run from i=2 to nx-1, and so there’s no need to worry about the legality of the
indices i-1 and i+1.

Fill in the missing code for the value of dudt in the time loop.

You run the program by passing in the values of xi, nu. Leave nu=1, but check out the following values for
xi=0.01, 0.015, 0.0155, 0.02. In each case, you should initially see three “humps” with u = +1, but
what happens next will vary. so that you can compute the laplacian,

4

8 The Grey-Scott 2D reaction-diffusion equation

Often, a process involves a pair of chemical species, u and v, which are spatially distributed over a domain.
These species may react with each other, changing their concentration. Normally, such a chemical process
will simply proceed until an equilibrium is reached and all the reactions have been carried out. But in a
biological process, there may be related processes which continually add some species and remove others.
This is a reasonable model of many biochemical processes, such as the way in which stripes or spots are
organized on the skin of an animal under development.

The Gray-Scott model simulates a biochemical process in which the chemical reaction of the two species u
and v is symbolized by

u+ 2v → 3v

v → p

where p represents an inert product of the reaction, and the differential equations for the concentrations u
and v are:

∂u

∂t
= du∇2u− uv2 + f(1− u)

∂v

∂t
= dv∇2v − (f + k)v

where du and dv are the diffusion coefficients, k represents the chemical reaction rate for v → p, and f is the
rate at which additional reactant species are supplied.

We are interested in simulating a solution of the Gray-Scott equation on a square, with periodic boundary
conditions - that is, the region is logically a torus.

Moreover, we wish to approximate the Laplacian using a stencil of 9 points rather than the usual 5. For
convenience, we will assume that the spacing is uniform, and the same in both x and y directions. In that
case, we can write

∇2u ≈ (ui−1,j−1 + 4ui−1,j + ui−1,j+1 + 4ui,j−1 − 20ui,j + 4ui,j+1 + ui+1,j−1 + 4ui+1,j + ui+1,j+1)/(6 dx2)

9 Exercise #5: Simulate the Grey-Scott equation

Copy the file skeleton5.m, which contains most of a Gray-Scott equation solver.

Currently, the time step code looks like this:

uLaplace = l a p l a c i a n 9 t o r u s (u , dx , dy) ;
vLaplace = l a p l a c i a n 9 t o r u s (v , dx , dy) ;

dudt = ?
dvdt = ?

u = u + dt ∗ dudt ;
v = v + dt ∗ dvdt ;

You should be able to fill in the question marks with code that looks almost exactly the same as the
mathematical differential equation.

If you are easily discouraged, you can use your laplacian5 torus() code here, but I encourage you, instead,
to try to build the laplacian9 torus(). If you simply create variables im1, ip1, jm1, jp1 and modify them
when you are on the boundary, you should be able to get this working.

5

Inside the code, there are a number of parameters you can change. The only ones I would look at are the
variables f and k, the “feed” and “kill” rates. The code lists suggested values called rings, splits, coral,
bubbles, and waves. Definitely try the coral values. The code should be set up right now so that that is the
default.

If your program runs to completion, you will also have an AVi movie that you can replay or show to friends.

10 A spiral reaction-diffusion equation

Professor Trenchea’s goal for this class was to be able to set up the spiral reaction-diffusion equation. The
original description of this problem is in the file spiral project.pdf. There have been a few changes to the
project since then, so I will restate the problem here.

Our homework problem involves the following pair of reaction-diffusion equations:

∂u

∂t
= ∇2u+

1

ε
u(1− u)(u− v + β

α
)

∂v

∂t
= δ ∇2v + u− v

with parameters

α = 0.25

β = 0.001

δ = 0.00001

ε = 0.002

The equations are set inside the rectangle [0, 80] × [0, 80], using a 401 × 401 grid of nodes. The boundary
conditions are ∂u

∂n = 0, ∂v∂n = 0, which we will enforce by computing u and v at all the interior nodes, then
copying the second row into the first row, the next to the last row into the last row, and similarly copying
the second column into the first column, and next to last column into the last column.

The time variable runs 0 ≤ t ≤ 5, and we plan to compute 5001 equally spaced values in time.

As a convenience, the grid coordinates and the initial condition have been supplied as part of the program.

11 Homework #10: The spiral reaction-diffusion equation

Copy the file skeleton6.m, which contains an almost complete version of the spiral reaction-diffusion equation
solver.

The time looks something like this:

i f (t rue)
del2U = l ap l a c i a n 5 t o r u s (U, dx , dy) ;
del2V = l ap l a c i a n 5 t o r u s (V, dx , dy) ;

else
del2U = l ap l a c i a n 9 t o r u s (U, dx , dy) ;
del2V = l ap l a c i a n 9 t o r u s (V, dx , dy) ;

end

dUdt = ?
dVdt = ?

U = U + dt ∗ dUdt ;

6

V = V + dt ∗ dVdt ;

Listing 3: Euler step for spiral reaction diffusion equation.

You will need to replace the question marks by the correct statement of the equations.

You can reuse your previously written laplacian5 torus() function here. That code assumed we were using
periodic boundary conditions, and so it was able to supply laplacian values at the boundary nodes. For our
problem, we only need the laplacian at the interior nodes, so we just ignore the extra data.

When you run your program, some time after t = 1.0, you will start to see a spiral forming, and this will
get more obvious as time progresses. However, you will notice that the spiral seems to have a somewhat
rectangular shape.

If you have time, then, copy the laplacian9 torus() function that you used in exercise #5, or write it now,
if you didn’t previously. Adjust the time loop so that it calls that function for the laplacians, and observe
how the spiral forms again, but this time with a somewhat rounded shape.

At the end of the run, the program will automatically save the last plot in a file.

Send the plot hw10.png to me at jvb25@pitt.edu AND to Professor Trenchea at trenchea@gmail.com.
I would like to see your work by Friday, 10 July 2020.

This is the last assignment for our class. Professor Trenchea and I hope that these two classes have given
you some interesting insights into mathematics, computing, and the modeling of physical processes using
differential equations.

Professor Trenchea and I have enjoyed working with you, and we wish you good luck in your graduate studies!

7

