
The steady 2D Poisson equation
MATH1091: ODE methods for a reaction diffusion equation

http://people.sc.fsu.edu/∼jburkardt/classes/math1091 2020/poisson 2d steady/poisson 2d steady.pdf

Electric field potential is an example of a Poisson problem.

The steady Poisson Problem

Given a Poisson equation on a 2D rectangular region, use finite differences to create a model of the
equation, set up the corresponding linear system, plot the approximate solution and compute the norm
of the approximation error.

1 Moving to 2D spatial domains

For our initial value problems and boundary value problems, we have been looking at a one dimensional
domain:

• a time interval Ω = tinit ≤ t ≤ tfinal for IVP’s;
• a space interval Ω = xleft ≤ x ≤ xright for BVP’s;

We’d like to look at some problems on more interesting domains. In this discussion, we will move to a 2D
spatial domain. Later, we will consider problems involving variation over a domain that extends over both
space and time. To handle such problems, we will generalize the methods that we developed for the 1D
steady (time independen) Poisson problem.

To keep things simple, our 2D domain Ω will usually be a rectangle. This simplifies settiing up our discretized
geometry. Although we don’t have time to cover them, there are plenty of techniques for handling more
complicated regions, such as a circle, a slice of pizza, or the outline of an arbitrary curve such as the border
of France.

1

2 The 2D Poisson equation

The steady (time-independent) Poisson equation in Ω ⊂ R2 can be written as:

−∆u = f(x, y) for all x, y ∈ Ω

We will assume that Ω is a rectangle, Ω = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Here, in 2D, the mysterious
symbol ∆u represents

∆u ≡ ∂2u

∂x2
+
∂2u

∂y2
= uxx + uyy

In order to be able to determine how well our approximations are doing, we will always assume that we
know a formula g(x, y) for the exact solution. For simplicity, we will generally assume that the boundary
conditions will be of Dirichlet type, and that means we can use the g(x, y) function to define these boundary
conditions:

u(x, y) = g(x, y) for all x, y ∈ ∂Ω.

Here, ∂Ω is the set of all boundary points of Ω. For a rectangle, a ≤ x ≤ b, c ≤ y ≤ d, this is simply the
points on the perimeter, that is

∂Ω = {(x, y) ∈ Ω : x = a or x = b or y = c or y = d}

For this lecture, we will stick with this simple version of the Poisson equation. Later we may see variations
of the Poisson equation, involving new boundary conditions, the inclusion of spatially dependent coefficients,
or extra terms in the equation, involving u, or ∂u

∂x or ∂u
∂y .

3 A Poisson equation on a 2D rectangle

As we did for the 1D equation, we will replace the mathematical problem by a discrete computational
problem. We start by making a discrete model of the the geometry. We use a regular mesh of points;
those along the boundary will be associated with the boundary conditions, while points in the interior
will be associated with the Poisson equation. At each point (i, j), we will write an equation involving the
approximation Ui,j . These equations will form a linear system to be solved. Our solution, then, will be a
table of these values.

Because our problem is 2D, we have to be more careful about how we generate the mesh points, how we
form the linear system, and how we try to report the results.

In particular, we will now be working with a mix of vectors (lists) and matrices (tables). A useful MATLAB
convention suggests using capital letters for matrices.

To discretize the geometry, we might use a grid of nx points in the x direction and ny points in y. In
MATLAB, this can be done by:

1 x = linspace (a , b , nx) ;
2 y = linspace (c , d , ny) ;

so that the node in column i and row j of the mesh has coordinates (x(i),y(j))

We will seek an approximate solution only at this discrete set of points, and we may use the notation Ui,j

to indicate the value of our discrete solution at (xi, yj).

Points corresponding to i = 1, i = nx, j = 1 or j = ny are boundary points where the Dirichlet boundary
conditions will be imposed, using the function g(x,y):

Ui,j = g(xi, yj)

2

At the remaining interior points we impose a discretized version of the Poisson equation. Recall that for the
1D equation, we had a way to approximate the second derivative u′′. Now that u is a function of x and y, we

simply use the same approximate technique for ∂2u
∂x2 and ∂2u

∂y2 , so that our discretized version of the Poisson

equation at the point (xi, yj) is:

−Ui−1,j + 2Ui,j − Ui+1,j

hx2
+
−Ui,j−1 + 2Ui,j − Ui,j+1

hy2
= f(xi, yj)

This equation involves the solution values at 5 nodes, which we can think of as N=north, S=south, E=east,
W=west and C=center. We think of this as equation number k in our linear system, with coefficient matrix
A. Then we can identify each coefficient A(∗, ∗) as occuring in matrix row k, the column corresponding to
each of the five variables.

A(k,W)*U(W) + A(k,E)*U(E) + A(k,N)*U(N) + A(k,S)*U(S) + A(k,C)*U(C) = rks(k)

The values of the coefficients and right hand side will be:

A(k,W) = -1/hx^2

A(k,E) = -1/hx^2

A(k,N) = -1/hy^2

A(k,S) = -1/hy^2

A(k,C) = 2/hx^2 + 2/hy^2

rhs(k) = f(x(i),y(j))

Now we have a system of nx× ny equations, which we symbolize by

A ∗ u = rhs

We expect our solution U to be a matrix, but the MATLAB linear equation solver is going to return u as
a vector, so that’s another issue we are going to have to deal with. If we handle things correctly, then the
command that turns that vector into a table will be something like this:

1 u = A \ rhs ;
2 U = reshape (u , nx , ny) ;

but we will explain what is going on a little later!

4 Exercise #1: Create a 4x3 discretized system

Consider a Poisson problem defined on Ω, the rectangle [0, 3] × [0, 2], with f(x, y) = −2 ∗ y, exact solution
g(x, y) = x2y, and Dirichlet boundary conditions.

If we use a 4 × 3 mesh of points, we get 12 nodes, and 12 equations, 10 of which are boundary equations,
and 2 are discretized Poisson equations. Suppose we number the nodes (and the corresponding equations)
as follows:

2 | 9 10 11 12

Y=1 | 5 6 7 8

0 | 1 2 3 4

+-----------

0 1 2 3

X

Write the 12 linear equations of the discretized system.

3

5 Assembling the linear system

We have nx × ny equations to construct, and we need a way to order them, just as I did in the diagram
above. We will use i and j to count x and y coordinates, and we want k to count nodes and equations. A
procedure to visit each node in order might look something like this:

1 k = 0 ;
2 for j = 1 : ny
3 for i = 1 : nx
4 k = k + 1 ;
5 i f (boundary)
6 equat ion k i s boundary equat ion at x i y j
7 else
8 equat ion k i s Poisson equat ion at x i y j
9 end

10 end
11 end

Listing 1: Logic needed to visit each node.

Assuming we have defined function value = g(x,y), a boundary equation can be thought of as

1 U { i , j } = g (x (i) , y (j))

while, using hx and hy as the x and y spacings, and function value = f(x,y) for the right hand side, we
have seen that the Poisson equation at node in column i and row j can be thought of as

1 (−U(i −1, j) +2∗U(i , j)−U(i +1, j)) /hxˆ2
2 +(−U(i , j−1) +2∗U(i , j)−U(i , j +1)) /hyˆ2 = f (x (i) , y (j))

6 Relating column and row indices to nodes or (x,y) coordinates

If we think of our nodes as a table or matrix, it is natural to index them using i and j. However, in order to
work with the linear solver, we also need to index the nodes by a single index variable k, that counts from
1 to nx ∗ ny.

The illustration below suggests an nx = 6×ny = 5 rectangle, for which we can identify a node by specifying
(i,j) coordinates, or a node index which we might call k. In particular, when writing the discretized Poisson
equation at a node with coordinates (i,j) and index k, it is natural to describe the 4 neighbors as N=north
at (i,j+1), S=south at (i,j-1), E=east at (i+1,j), W=west at (i-1,j). However, our data is stored
by node index, so while we think of the North value in terms of its i and j indices, we need to be able to
produce the corresponding node index k.

^

5 | 25 26 27 28 29 30

4 | 19 20 21 22 23 24

3 J 13 14 15 16 17 18

2 | 7 8 9 10 11 12

1 | 1 2 3 4 5 6

|

+-----------I-------->

1 2 3 4 5 6

Looking at the illustration, we can see that if we let the center variable be in column i=5, row j=3, and node
index k=17, then its North node is in column i=5, row j=4, and we need a way to automatically compute
that the North node index is k=23.

The following one line function will take any pair (i, j) in a grid and return the corresponding k index:

4

1 function k = k f r om i j (i , j , nx)
2 k = i + (j − 1) ∗ nx ;
3 return
4 end

Listing 2: k from ij.m computes the node index.

In other words, since nx=6, the node with i=5, j=4 has k=23 because 5 + (4− 1) ∗ 6 = 23.

Although we won’t need it today, a similar function can be written to return the (i, j) coordinates given the
k index:

1 function [i , j] = i j f r om k (k , nx)
2 i = mod (k , nx) ;
3 j = f loor (k / nx) + 1 ;
4 return
5 end

Listing 3: ij from k.m computes the (ij) indices.

7 Exercise #2: Set up the linear system for the 4x3 problem

Here is a sketch of a MATLAB function which sets up and solves the linear system for the 4x3 Poisson
problem that you looked at in Exercise #1.

In order to create an equation for every node, we consider every combination of i and j using a pair of nested
loops. When we are ready to create a new equation, we increase the k index by 1. The value k identifies
both the node we are considering, and the corresponding equation.

We set the equation by defining the coefficients of node k, and its four neighbors, which are the nodes to
the east, west, north and south of it. Since our center node k has mesh indices (i, j), it’s easy to generate
the corresponding i and j indices of the four neighbors. However, in order to put the coefficients into the
matrix, we need to identify those nodes by their corresponding node index. That’s where we can use the
k from ij()function. Here is a skeleton code that you need to fill in:

1 a = ?
2 b = ?
3 c = ?
4 d = ?
5 nx = ?
6 ny = ?
7 hx = ?
8 x = ?
9 hy = ?

10 y = ?
11
12 A = zeros (? , ?) ;
13 rhs = zeros (? , 1) ;
14
15 k = 0 ;
16 for j = 1 : ny
17 for i = 1 : nx
18 k = k + 1 ;
19 i f (boundary) % what va lue s o f i and j mean we are on the boundary?
20 A(k , k) = ?
21 rhs (k) = ?
22 else
23 CENTER = k ;
24 A(k ,CENTER) = ?

5

25 WEST = ? % Work out the (i , j) coord ina te s o f WEST, and use k f r om i j () .
26 A(k ,WEST) = ?
27 EAST = ?
28 A(k ,EAST) = ?
29 SOUTH = ?
30 A(k ,SOUTH) = ?
31 NORTH = ?
32 A(k ,NORTH) = ?
33 rhs (k) = ?
34 end
35 end
36 end
37
38 u = A \ rhs
39
40 d e f i n e function g (x , y) here
41 d e f i n e function f (x , y) here

Listing 4: skeleton2.m

Starting from skeleteon2.m, create a MATLAB function exercise2.m that sets up and solves the
tiny Poisson linear system.

Your u solution should be [0,0,0,0,0,1,4,9,0,2,8,18].

8 Exercise #3: Postprocessing by tabulating

For small problems, we can report the results by simply printing the solution vector. However, it’s helpful
to include extra information, such as the mesh indices and the spatial coordinates.

Here is one way to do this:

1 u = A \ rhs ;
2 %
3 % Tabulate the s o l u t i on .
4 %
5 fpr intf (1 , ’ k i j x y u exact \n ’) ;
6 k = 0 ;
7 for j = 1 : ny
8 fpr intf (1 , ’ \n ’) ;
9 for i = 1 : nx

10 k = k + 1 ;
11 fprintf (1 , ’%2d %2d %2d %6.2 f %6.2 f %6.2 f %6.2 f \n ’ , . . .
12 k , i , j , x (i) , y (j) , u (k) , g (x (i) , y (j))) ;
13 end
14 end

Listing 5: Tabulate solution

Starting from exercise2.m, create a MATLAB function exercise3.m which tabulates your solution.

9 Exercise #4: Use a general solver

Suppose we want to solve a different Poisson problem? Since the program we wrote is fairly complicated,
is it possible to identify a part that doesn’t have to change? If so, we can put that as a separate function,
poisson solver.m, and just feed it the new information.

Here is how it might work, allowing the user to specify the size and discretization of the rectangle, and the
two special functions f(x, y) and g(x, y). For this example, we repeat the previous calculation.

6

1 a = 0 . 0 ;
2 b = 3 . 0 ;
3 c = 0 . 0 ;
4 d = 2 . 0 ;
5 nx = 4 ;
6 ny = 3 ;
7 %
8 % Notice t ha t data i s now returned as TABLES (matr ices) .
9 %

10 [X, Y, U] = po i s s o n s o l v e r (a , b , c , d , nx , ny , @f , @g) ;
11 %
12 % You could do some pos t proces s ing here us ing t a b l e s
13 % k , i , j , X(i , j) , Y(i , j) , U(i , j) , g (X(i , j) ,Y(i , j)) .
14 %
15
16 function value = f (x , y)
17 value = − 2 .0 ∗ y ;
18 return
19 end
20
21 function value = g (x , y)
22 value = x .ˆ2 .∗ y ;
23 return
24 end

Listing 6: exercise4 calls poisson solver.m

Create this program exercise4.m, using a downloaded copy of poisson solver.m, and report the
results in a table.

10 Postprocessing: The RMS error norm

Printing the data in a table is OK for small problems, but for large problems we want something easier to
understand quickly. If we know the exact solution g(x, y), which we usually will for these sample problems,
then we may be interested in reporting the error in our approximation.

We assume that poisson solver() has returned the results X, Y, U as matrices. We can create a corre-
sponding table of the exact solution at all the nodes by V = g(X,Y). (This assumes that the g(x, y) function
has been written using MATLAB’s “dot” operators for multiplication, division, and exponentiation!). Then
the error is the table defined by E=U-V. To use MATLAB’s rms() function, we need to temporarily make E

look like a vector, and so the error norm is calculated this way:

1 enorm = rms (reshape (E, nx∗ny , 1)) ;

Once enorm has been computed, it should be reported as the RMS norm of the error:

1 fpr intf (1 , ’ nx = %d , ny = %d , rms e r r o r norm = %g\n ’ , nx , ny , enorm) ;

11 Exercise #5: Compute RMS error norm for a new problem

Our first example problem was too easy to solve. We actually get zero error. In order to study convergence,
we want a problem whose solution is harder to approximate.

Consider the Poisson problem on the rectangle 0 ≤ x ≤ 1, 1 ≤ y ≤ 3, with right hand side f(x, y) =
π2 ∗ (x2 + y2) ∗ sin(π ∗ x ∗ y), for which the exact solution is g(x, y) = sin(π ∗ x ∗ y).

7

Create a MATLAB file exercise5.m which sets up this new problem, solves it with poisson solver(),
and reports the error norm. Use nx = 11 and ny = 21.

If you run your program again, with nx = 21 and ny = 41, the mesh spacing h has decreased by a factor of
1
2 . By what factor does the error norm decrease?

12 Homework: Plot the solution of the new problem

The poisson solver() code returns the solution data as tables X, Y, U.

MATLAB uses exactly this type of data to make contour line, contour color, and surface plots. Here are the
commands to make this happen:

1 figure ()
2 contour (X, Y, U)
3 t i t l e (’ Contour l i n e s ’) ;
4 print (’−dpng ’ , ’ hw2 contour l i n e s . png ’) ;
5
6 figure ()
7 contour f (X, Y, U)
8 t i t l e (’ Contour c o l o r s ’) ;
9 print (’−dpng ’ , ’ hw2 contour co lo r s . png ’) ;

10
11 figure ()
12 surf (X, Y, U) ;
13 t i t l e (’ Sur face ’) ;
14 print (’−dpng ’ , ’hw2 . png ’) ;

Listing 7: Contour and surface plots

Starting from exercise5.m, make a MATLAB file hw2.m that creates these three plots of the
solution.

For the color contour and surface plots, you could call colorbar() to display the relationship between color
and value.

By default, the surface plot includes black grid lines on the surface. Especially when a large number of mesh
points are used, this can make the surface hard to see. An alternative command then is surf (X, Y, U,

’edgecolor’, ’none’);

Notice that you can click in the surface plot window and “move” the surface so you can study it.

Send your surface plot hw2.png to me at jvb25@pitt.edu. I would like to see your work by
Friday, 15 May 2020.

8

