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A zigzag path is a sign of trouble!

Implicit methods and stiff equations

A stiff differential equation can cause an ODE solver to produce oscillatory errors unless a very small
step size is used. Using an implicit method instead may kill the oscillations.

1 A surprisingly difficult ODE

Consider the following differential equation, which we will give the nickname “stiff”:

y′ = 50(cos(t) − y)

y(0.0) = 0.0

for which the exact solution is

y(t) = 50
sin(t) + 50 cos(t) − 50e−50t

2501

and suppose we want estimate the solution over the interval [0, 1] using the Euler method.

We could write the solution as a single program, that allows us to choose the number of steps n, and returns
the resulting set of t, y values for tabulating or plotting:

1 function [ t , y ] = s t i f f e u l e r ( n )
2
3 t = zeros ( n + 1 , 1 ) ;
4 y = zeros ( n + 1 , 1 ) ;
5
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6 a = 0 . 0 ;
7 b = 1 . 0 ;
8 dt = ( b − a ) / ( n − 1 ) ;
9

10 t (1 ) = a ;
11 y (1 ) = 0 . 0 ;
12 %
13 % We can c a l l a func t i on fo r dydt , or wr i t e the formula .
14 %
15 for i = 1 : n
16 t ( i +1) = t ( i ) + dt ;
17 y ( i +1) = y( i ) + dt ∗ s t i f f p r im e ( t ( i ) , y ( i ) ) ;
18 % y( i+1) = y ( i ) + dt ∗ 50.0 ∗ ( cos ( t ( i ) ) − y ( i ) ) ;
19
20 end
21
22 return
23 end

Listing 1: Forward Euler method for stiff equation.

For convenience, we might write the derivative as a function:

1 function dydt = s t i f f p r im e ( t , y )
2 dydt = 50 .0 ∗ ( cos ( t ) − y ) ;
3 return
4 end

Listing 2: stiff prime.m evaluates the right hand side.

and the exact solution:

1 function value = s t i f f e x a c t ( t )
2 va lue = 50 .0 ∗ ( sin ( t ) + 50 .0 ∗ cos ( t ) − 50 .0 ∗ exp ( − 50 .0 ∗ t ) ) / 2501 . 0 ;
3 return
4 end

Listing 3: stiff exact.m evaluates the exact solution.

A value of n = 27 might seem reasonable to get from t = 0.0 to t = 1.0. We can compute the solution, and
plot it versus the true solution (on a finer grid) as follows:

1 function s t i f f e u l e r t e s t ( n )
2 [ t1 , y1 ] = s t i f f e u l e r ( n ) ;
3
4 t2 = linspace ( 0 . 0 , 1 . 0 , 101 ) ;
5 y2 = s t i f f e x a c t ( t2 ) ;
6
7 plot ( t1 , y1 , ’ ro− ’ , t2 , y2 , ’b− ’ )
8 return
9 end

Listing 4: stiff euler test.m computes a forward Euler solution.

The resulting approximate zigzag curve (red) looks nothing like the true smooth solution:
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Explicit Euler solution with 27 steps.

It doesn’t just seem like inaccuracy, but a wild variation in the direction. This equation is just one example
of a stiff differential equation. Such equations include a feature that gives a typical ODE solver make a
staggering, zigzag approximation to the solution. Even if we don’t know the true solution, we can usually
recognize that something is wrong. In general, if we reduce the stepsize dt or equivalently increase n,
eventually the solution will look reasonable. However, this stepsize reduction may be quite severe, even
though the shape of the solution curve doesn’t give us any warning about how difficult it will be for

The ODE solvers we have looked at so far have all been of the explicit or forward type. That is, when we
write the formula for the next solution estimate y(i+1, we put all the ODE derivative information on the
right hand side, evaluated at the previous time t(i) and previous solution y(i). And that’s what the Euler
method can be thought of as drawing the tangent line at the current solution, and following it forward in
time a small distance.

A different approach to solving ODE’s is known as the family of implicit or backward methods. To make
an implicit version of the Euler method, we start out by writing the Euler update equation again, except
that we evaluate the right hand side of the ODE at the “future” step i + 1. In other words, for our stiff
example, we replace

1 y ( i +1) = y( i ) + dt ∗ 50 .0 ∗ cos ( t ( i ) ) − dt ∗ 50 ∗ y ( i )

Listing 5: Explicit Euler update step.

by

1 y ( i +1) = y( i ) + dt ∗ 50 .0 ∗ cos ( t ( i +1) ) − dt ∗ 50 ∗ y ( i +1)

Listing 6: Implicit Euler update step.

Once we rewrite the update step, we have to rearrange it so that it tells us how to solve for y(i+1). For this
case, it’s not too hard to work out what the implicit Euler update state should be:

y(i+1) = y(i) + dt * 50.0 * cos ( t(i+1) ) - dt * 50 * y(i+1)

y(i+1) + dt * 50 * y(i+1) = y(i) + dt * 50.0 * cos ( t(i+1) )

( 1.0 + dt * 50 ) * y(i+1) = y(i) + dt * 50.0 * cos ( t(i+1) )

y(i+1) = ( y(i) + dt * 50.0 * cos ( t(i+1) ) ) / ( 1.0 + 50.0 * dt )
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1 function s t i f f e u l e r b a c kwa r d t e s t ( n )
2 [ t1 , y1 ] = s t i f f e u l e r b a c kwa r d ( n ) ;
3
4 t2 = linspace ( 0 . 0 , 1 . 0 , 101 ) ;
5 y2 = s t i f f e x a c t ( t2 ) ;
6
7 plot ( t1 , y1 , ’ ro− ’ , t2 , y2 , ’b− ’ )
8 return
9 end

Listing 7: stiff euler backward.m computes a backward Euler solution.

Using the same number of steps, our backward Euler solver does a much better job of using the ODE to
approximate the true curve:

Implicit Euler solution with 27 steps.

Just as there are many explicit ODE solvers, there are many implicit ODE solvers. The backward Euler
method has only first order accuracy, so if we think an ODE is stiff, and we want high accuracy, we might
look for an implicit method of higher order.

2 The Midpoint Method

The midpoint method for solving an ODE is an implicit method. When describing programs, we write t(i)

and y(i), but mathematically, we write ti and yi, and we think of the derivative or ODE right hand side
as a function y′(t, y). Using this notation, we can mathematically describe the midpoint method as seeking
values that satisfy the following equation:

yi+1 = yi + dt ∗ y′(ti, yi) + y′(ti+1, yi+1)

2

In a way, this looks like an explicit Euler method, except that instead of using y′(ti, yi) in the update, we
use an average of the derivative at the current and future points. Of course, since we don’t actually know
the future point, this is really an implicit method. If we are lucky, for a particular problem we can rewrite
this update formula so that it is simple to see how to determine yi+1.
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For our stiff example, we start with the definition, and then solve for yi+1:

yi+1 = yi + dt ∗ y′(ti, yi) + y′(ti+1, yi+1)

2

yi+1 = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ (cos(ti+1) − yi+1)

2

yi+1 +
dt

2
(50 ∗ yi+1) = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ cos(ti+1)

2

(1.0 + 25 ∗ dt) ∗ yi+1 = yi + dt ∗ 50 ∗ (cos(ti) − yi) + 50 ∗ cos(ti+1)

2

yi+1 =
yi + 25 ∗ dt ∗ (cos(ti) − yi + cos(ti+1))

1.0 + 25 ∗ dt

It’s actually tricky to write this update formula correctly in MATLAB, getting all the parentheses in the
right place. So I will write out the solver routine in full, and show the update formula spread out over several
lines, so that I can force the open and close parentheses to line up clearly.

1 function [ t , y ] = s t i f f m i d p o i n t ( n )
2
3 t = zeros ( n + 1 , 1 ) ;
4 y = zeros ( n + 1 , 1 ) ;
5
6 a = 0 . 0 ;
7 b = 1 . 0 ;
8 dt = ( b − a ) / n ;
9

10 t (1 ) = a ;
11 y (1 ) = 0 . 0 ;
12
13 for i = 1 : n
14 t ( i +1) = t ( i ) + dt ;
15 y ( i +1) = . . .
16 ( . . .
17 y ( i ) + 25 .0 ∗ dt ∗ ( . . .
18 cos ( t ( i ) ) − y ( i ) + cos ( t ( i +1) ) . . .
19 ) . . .
20 ) . . .
21 / ( 1 . 0 + 25 .0 ∗ dt ) ;
22 end
23
24 return
25 end

Listing 8: stiff midpoint.m solves the stiff problem.

Now by calling the function stiff midpoint test(n), we can compute a new estimate and plot it:
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Midpoint solution with 27 steps.

We can guess from the plot that the midpoint method has better accuracy than the backward Euler method.
In fact, while the backward Euler method has accuracy O(dt), the midpoint method’s accuracy is O(dt2).
This means that, for a given stepsize, we are likely to get better results with the midpoint rule, and if we
cut the stepsize in half, the backward Euler error is divided by 2, but the midpoint error is divided by 4.
The midpoint method has some other features that make it very attractive for research computing, and so
we will be discussing it more in the future.

3 Report: Convergence Comparison

Since we know the exact solution of the stiff problem, we can determine the error we make at each step. We
summarize the error using a norm. A good norm to use is the RMS norm, which is just the `2 norm adjusted
for the vector size.

We want to verify that the forward Euler and backward Euler methods have an accuracy that is O(dt),
whereas the midpoint method’s accuracy is O(dt2). To do this, we will solve the stiff problem repeatedly,
increasing the number of steps from n = 20 to 40, 80, 160, 320. Each time we will compute the RMS norm
of the error, and make a table. Next week we will talk about how to analyze the results of the table.

You can modify the codes stiff euler test.m, stiff euler backward test.m, and stiff midpoint test.m to solve
the equation, returning values t1 and y1. Evaluate the exact solution y2 at the same set of t1 values, and
then compute e, the RMS norm of y2-y1. For each value of n and each ODE solver, record the value of e.

Backward

n Euler Euler Midpoint

--- ---------- ---------- ----------

20 .......... .......... ..........

40 .......... .......... ..........

80 .......... .......... ..........

160 .......... .......... ..........

320 .......... .......... ..........

Bring your completed table to our next meeting, at 2:00pm, Thursday, 13 February, room Thackery 624.
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