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INTRO: Schedule

Next Class:

Image Processing

Assignment:

Programming Assignment #7 is due today.

Programming Assignment #8 will be due July 21.
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INTRO: More Methods, More Problems

We considered a special kind of differential equation called an
initial value problem, in which we were given a starting time t0, the
value of a quantity at that time, u0, and a rule for how the
quantity changed over time, involving a derivative:

du

dt
= f (t, u)

and we were asked to “solve” this problem.

We agreed that a computational solution would simply be a series
of pairs of values (t1, u1), (t2, u2), ... which we think of as points
along a solution curve.
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INTRO: More Methods, More Problems

To produce a computational solution, we used the Euler method,
which essentially uses the derivative information to make a linear
prediction about the value at the next desired time. But this
method could be inaccurate, and improving accuracy could require
taking very many small steps.

Thus, we would like to find some alternatives to the Euler method
that are more accurate.

We would also like to know how we can solve problems in which
two or three variables change together, a coupled system, or in
which the rule of change does not involve the first derivative, but
instead d2u

dt2 , a second order system.
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INTRO: Using a Library

When we get to the Runge Kutta method, I will show you a
little bit about how to use a library. That is, we suppose that
someone has written some C++ code that is useful to you. Instead
of copying that code into your program, you leave it as a separate
file, and tell the compiler to combine the two when it is time to
create an executable program.

There are some simple rules for using a library that you should be
familiar with. Libraries make it possible for you to write a very
small main program that takes advantage of powerful algorithms
you didn’t have to write yourself.
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MIDPOINT:

One way to think about Euler’s method is that it uses the
derivative at the current solution point (t0, u0) to create a linear
prediction of the solution at the next time t1.

This is like trying to draw a curve by using a sequence of straight
line segments. It will never be exact, and a good approximation can
require very short line segments, especially if the curve is “curvy”.

The midpoint method tries for an improved prediction. It does this
by taking an initial half step in time, sampling the derivative there,
and then using that forward information as the slope. In other
words, it replaces the tangent line by a line that is starting to bend
correctly.
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MIDPOINT:

The reason that the midpoint rule is better requires working out
the Taylor series approximation to the solution. We’ll take this on
faith. We’ll concentrate, instead, on the rules for producing this
better estimate of the next solution:
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MIDPOINT:

A step of the midpoint method begins with (t0,u0) and a
stepsize dt.

Half Step:
th = t0 + dt / 2;
uh = u0 + ( dt / 2 ) * f ( t0, u0 );

Full Step:
t1 = t0 + dt;
u1 = u0 + dt * f ( th, uh ); <--- f is evaluated “half way”

The half step essentially peeks into the future, and tries to guess
which way the wind is blowing midway between the current and
future times.
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MIDPOINT.CPP:

Fortunately, the midpoint method uses the same input and
output as Euler’s method. Therefore, we need:

t0, the starting time;

u0, the starting value;

dt, the stepsize;

f(t,u), a function that evaluates the derivative.

and what emerges as the function value is u1, the approximate
solution at time t1.

So our function will be declared as

double midpoint ( double t0, double u0, double dt,
double f ( double t, double u ) );
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MIDPOINT.CPP: The Midpoint Code

The midpoint method is wordier than Euler was:

double midpoint ( double t0, double u0, double dt,
double f ( double t, double u ) )

{
double th, uh, u1;

//
// Take a half time step and estimate UH there.
//
th = t0 + 0.5 * dt;
uh = u0 + 0.5 * dt * f ( t0, u0 );

//
// Evaluate the derivative at (TH,UH).
//
u1 = u0 + dt * f ( th, uh );

return u1;
} 13 / 1



MIDPOINT F3.CPP: A Program For The Wiggly Equation

Let’s try to integrate the wiggly function:
# include <cstdlib>

# include <iostream>

using namespace std;

double midpoint ( double t0, double u0, double dt, double f ( double t, double u ) );

double f3 ( double t, double u );

int main ( )

{

double dt = 1.0, exact, pi = 3.14159265, t0, t1, tmax, u0, u1; <-- Initial data

u0 = 0.5;

t0 = 0.0;

tmax = 12.0 * pi;

dt = 0.1;

while ( true )

{

cout << t0 << " " << u0 << "\n";

if ( tmax <= t0 ) <-- Did we reach our goal?
{

break;

}

t1 = t0 + dt; <-- Take another step.
u1 = midpoint ( t0, u0, dt, f3 );

t0 = t1; <-- Shift data for next loop.
u0 = u1;

}

return 0;

}

...Text of ”midpoint.cpp” and ”f3.cpp” follows... 14 / 1



ERROR: Comparing Approximate Solutions

When we run our midpoint f3.cpp program for different time
steps, we concentrate on a few selected points:

<---------EULER------------> <---------MIDPOINT--------->

T U U U U U U

0.25 0.10 0.01 0.25 0.10 0.01

0.0 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

10.0 0.185518 0.244324 0.285323 0.292115 0.290496 0.290208

20.0 0.363628 0.769275 1.187460 1.295780 1.246530 1.245830

30.0 0.029936 0.091483 0.173494 0.189469 0.186583 0.186158

For the midpoint method, our estimated solution values don’t
change drastically as we decrease the step size. This suggests our
midpoint calculation is more accurate.
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ERROR: Comparing Approximate Solutions

Normally, comparing solutions for different stepsizes is the best
we can do. Since I happen to know the correct solution for this
problem, let me show the errors for the midpoint method now:

<---------MIDPOINT--------->

<---------SOLUTION---------> <----------ERRORS----------->

T U U U

0.25 0.10 0.01 0.25 0.10 0.01

0.0 0.500000 0.500000 0.500000 0.0 0.0 0.0

10.0 0.292115 0.290496 0.290208 0.0019 0.00029 0.0000027

20.0 1.295780 1.246530 1.245830 0.0071 0.00070 0.0000043

30.0 0.189469 0.186583 0.186158 0.0033 0.00042 0.0000036

For the midpoint method, dividing the stepsize by 10 reduces the
error by 100. This is called a “quadratic” error reduction, and
means we can get accurate solutions faster.
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MULTIPLE: Example 4: Predator/Prey

18 / 1



Example 4: Predator/Prey

On Survivor Island, we have two animal populations, rabbits, and
foxes. The rabbits survive by munching grass, but the foxes munch
on rabbits.

Let r represent the number of rabbits, and f the number of foxes,
which are really functions of time that we may also write as r(t)
and f (t).

The chance that a particular rabbit will meet a particular fox in a
unit of time has been measured as the number α. Therefore, the
chance that some rabbit will meet some fox is α ∗ r ∗ f . Meetings
like this decrease the number of rabbits, and give the foxes a
means to have baby foxes.

Without these encounters, the rabbits simply reproduce, at a rate
2r , and the foxes gradually die out, at a rate of −f .
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MULTIPLE: Example 4: Predator Prey

These equations describe a predator-prey system of equations:

dr

dt
=2r − α r f

df

dt
=− f + α r f

with r0 and f0 specified at time t = 0.

A sample set of data is α = 0.01, r0 = 300, f0 = 150.

Notice that these equations are coupled - that is, we can’t solve the
equation for r(t) without working out the solution for f (t) as well.

20 / 1



MULTIPLE: Example 5: The Lorenz Equations
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MULTIPLE: Example 5: The Lorenz Equations

Edward Lorenz was trying to set up an extremely simplified model
of weather, and came up with the following system of equations:

dx

dt
=σ(y − x)

dy

dt
=ρx − y − xz

dz

dt
=xy − βz

where σ = 10, β = 8
3 and the value of ρ varies, but often chosen

to be 28.

These equations are also coupled, but there is more going on than
that! The answer is very sensitive to the initial values.
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MULTIPLE: Coupled Differential Equations

We said earlier that differential equations are used to explain
how a system changes. Sometimes, the system we are interested in
has several quantities, which affect each other. In that case, it may
be that the system can be modeled by a set of several differential
equations which are coupled.

The methods we have studied for a single differential equation can
easily be extended to this case. However, in C++, we will have to
move from dealing with scalar variables to using arrays.

To keep things simple, we will go back to the Euler method, and
consider how it can be adapted to handle the predator prey
problem.
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MULTIPLE: The Solution is an Array

We will still think of the variable name u as describing the
solution variable, but now u must be an array of dimension 2.

Thus, the initial condition for the predator prey problem is set by

double dt = 0.1, t0 = 0.0, u0[2] = { 300, 150 };

Similarly, we can set up a second array u1[2], to hold the next
value of the solution.

For convenience, we can copy entries of the array and call them r
and f, but the storage and update of information should generally
be done with arrays.
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MULTIPLE: The Derivative Function

It will be easiest to change the derivative function f() so that the
derivative array is an argument dudt[], rather than being returned
as the function value. For the predator prey problem, we have:

void f4 ( double t, double u[], double dudt[] )
{

double alpha = 0.01, f, r;

r = u[0];
f = u[1];

dudt[0] = 2 * r - alpha * r * f;
dudt[1] = - f + alpha * r * f;

return;
}
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MULTIPLE: The Derivative Function

Trying to set up an Euler function when arrays are involved is a
little too complicated for our beginning class. Instead, let’s bring
the Euler computation into the main program.

while ( true )

{

cout << " " << t0 << " " << u0[0] << " " << u0[1] << "\n";

if ( tmax <= t0 )

{

break;

}

//

// New derivative vector.

//

f ( t0, u0, dudt );

//

// Update T1, U1 using the Euler method.

//

t1 = t0 + dt;

for ( i = 0; i < 2; i++ )

{

u1[i] = u0[i] + dt * dudt[i];

}

//

// Shift data for next loop.

//

t0 = t1;

for ( i = 0; i < 2; i++ )

{

u0[i] = u1[i];

}

}
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MULTIPLE: Rabbits using Euler with DT = 0.1

The Euler method with DT = 0.1 computes negative rabbits!

plot "euler_f4.txt" using 1:2 with lines
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MULTIPLE: Rabbits using Euler with DT = 0.01

With DT = 0.01, results are better, but they grow.

plot "euler_f4.txt" using 1:2 with lines

28 / 1



MULTIPLE: Rabbits and Foxes, Euler with DT = 0.001

With DT = 0.001, results are almost periodic.

plot "euler_f4.txt" using 1:2 with lines,
"euler_f4.txt" using 1:3 with lines
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MULTIPLE: Phase Plane

Plotting rabbits versus foxes shows us the cyclic behavior.

plot "euler_f4.txt" using 2:3 with lines
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SECOND: Example 6: The Cannon Equation
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SECOND: Example 6: The Cannon Equation

A cannon is aimed at angle α, and charged with enough powder
that the cannonball exits the cannon with speed s.

Thus, at time t0 = 0, we have initial position
~p(t0) = (x , y) = (0, 0) and velocity ~v(t0) = (s ∗ cos (α), s ∗ sin (α)).

The subsequent position of the cannonball satisfies

d2x

dt2
=0

d2y

dt2
=− g
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SECOND: Example 6: The Cannon Equation

Typical data would have s = 50meter
sec , α = 30o = π

6 and g is

32 feet
sec2 or 9.8 meters

sec2 .

This is a pair of equations, and both equations are second order,
that is, they involve the second derivative of the quantity of
interest.
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SECOND: Example 7: The Pendulum
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SECOND: Example 7: The Pendulum

The angle θ made by a pendulum satisfies the equation:

d2θ

dt2
= −g

l
sin (θ)

where g is the force of gravity, l is the length of the pendulum,
and θ is the angle the pendulum makes from the downward vertical
vector.

At the starting time t0, we are given the initial angle θ(t0) and the
angular velocity, dθ

dt .

Typical initial data is t0 = 0, θ(t0) = π
4 , and dθ

dt (t0) = 0, with g =
386.09 in

sec2 and l = 10 inches.

This problem involves a second derivative.
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SECOND: Example 8: Planetary Motion
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SECOND: Example 8: Planetary Motion

As a function of time, the position vector p(t) of a planet
satisfies the vector equation

d2~p

dt2
= −

~p

||~p||3

or, writing ~p(t) = (x(t), y(t))

d2x

dt2
=

−x

(x2 + y2)
3
2

d2y

dt2
=

−y

(x2 + y2)
3
2

This is a pair of coupled, second order equations.
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SECOND: Rewrite as a System

We know how to solve an initial value problem of the form
du
dt = f (t, u); we can even work with problems where u is really an
array of several values that change together.

Nothing has prepared us for a problem involving a second
derivative. But since we have a great hammer, we want everything
to look like a nail...so let’s try to transform the second order
differential equation.
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SECOND: Rewrite as a System

Let’s write a typical second order equation as:

d2v

dt2
= f (t, v)

Now let’s make a vector of new variables, with the property that

u[0] =v

u[1] =
dv

dt

What happens if we differentiate these two equations?

du[0]

dt
=

dv

dt
= u[1]

du[1]

dt
=

d2v

dt2
= f (t, v) = f (t, u)
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SECOND: Rewrite as a System

In other words, a second order equation like:

d2v

dt2
= f (t, v)

can always be rewritten as a pair of first order equations:

du[0]

dt
=u[1]

du[1]

dt
=f (t, u)

and as long as we have initial conditions for both v and dv
dt , we can

solve these problems too!
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SECOND: The Pendulum Equation

The pendulum equation looks like:

d2θ

dt2
= −g

l
sin (θ)

but we can replace this by a pair of equations:

du[0]

dt
=u[1]

du[1]

dt
=− g

l
sin (u[0])
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SECOND: The Pendulum Equation

So the derivative function would be:

void f7 ( double t, double u[], double dudt[] )
{

double g = 386.09, l = 10.0;

dudt[0] = u[1];
dudt[1] = - ( g / l ) * sin ( u[0] );

return;
}
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SECOND: The Midpoint Time Loop

while ( true )

{

cout << " " << t0 << " " << u0[0] << " " << u0[1] << "\n";

if ( tmax <= t0 )

{

break;

}

// Half step.

f7 ( t0, u0, dudt );

th = t0 + 0.5 * dt;

for ( i = 0; i < 2; i++ )

{

uh[i] = u0[i] + 0.5 * dt * dudt[i];

}

// Full step.

f7 ( th, uh, dudt );

t1 = t0 + dt;

for ( i = 0; i < 2; i++ )

{

u1[i] = u0[i] + dt * dudt[i];

}

// Shift.

t0 = t1;

for ( i = 0; i < 2; i++ )

{

u0[i] = u1[i];

}

}
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SECOND: Plot of Angle and Angular Velocity

plot "midpoint_f7.txt" using 1:2 with lines,
"midpoint_f7.txt" using 1:3 with lines
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SECOND: Example 6: The Cannon Equation

The cannon equation involves two equations, both of second
order. To handle this, create a single array u[] of size 4, setting:

u[0] =x , u[1] =
dx

dt
,

u[2] =y , u[3] =
dy

dt
so the equations become:

du[0]

dt
=u[1]

du[1]

dt
=0

du[2]

dt
=u[3]

du[3]

dt
=− g

and now set up the system of four equations.
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RK4:

If you a solving a problem in C++, there’s always a simple
technique, like the Euler or midpoint method, that might work for
you. But sometimes your problem is more difficult or you need a
better guarantee of accuracy. At that time, the smart thing to do
is to hope that someone else has already written a piece of C++
code for your problem

I would like to show you how you do this. We will do this by trying
to find a better solver for the ”wiggly” function. The solver we will
choose is called the Runge Kutta method of order 4 or RK4, and
just from the name, you can guess you probably don’t want to
have to write this code yourself!

When people write useful codes, they put them in libraries for
others to use. We’ll assume we’ve found a library with the RK4
solver in it, and try to use it.
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RK4:

The RK4 solver is available to us in a library. We happen to have
access to the source code, that is, the text of the C++ file. Often,
you only get a copy of the compiled code. Since a library is not a
complete program, the compiler has to be warned not to try to
make a program out of it. This is done using the extra switch -c.

g++ -c rk4.cpp

In that case, the compiler creates what is called an “object file”, in
this case, the file rk4.o. Even if the source code is no longer
available, the object file can be used to build an executable
program.
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RK4:

Since we didn’t write the rk4.cpp file, we need to know how to
call the rk4() function it contains. Luckily, we have a copy of the
source code; otherwise, we’d have to hope there was a manual, or
some online information.

The declaration looks just like the one for the simple Euler method:

double rk4 ( double t0, double u0, double dt,
double f ( double t, double u ) )

and the code works the same way.
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RK4:

Since we are going to call the rk4() function, we must include
the declaration of that function in our main program:

double rk4 ( double t0, double u0, double dt,
double f ( double t, double u ) );

except that, like most libraries, the author has made an extra
”include” file available which declares all the things in the library.
We use it by inserting the statement:

# include "rk4.hpp"

at the beginning of the program with all the other include
statements.
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RK4:

So, once we’ve declared rk4() using an include statement, and
replaced the call to euler by a call to rk4(), we’re almost ready.

Now, we need to compile our main program, and tell the compiler
to add on the library code as well:

g++ myprog.cpp rk4.o <-- rk4.cpp was compiled earlier

and the compiler will create the usual a.out executable file.

Libraries usually come already compiled. If our program simply
came in two pieces, we could compile them at the same time with
the command

g++ myprog.cpp rk4.cpp
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RK4:

Our main program looks like this:
# include <cstdlib>

# include <iostream>

# include <cmath>

using namespace std;

# include "rk4.hpp"

double f3 ( double t, double u );

int main ( )

{

double dt = 0.1, pi = 3.14159265, t0 = 0.0, t1;

double tmax = 12.0 * pi, u0 = 0.5, u1;

while ( true )

{

cout << " " << t0 << " " << u0 << "\n";

if ( tmax <= t0 )

{

break;

}

// Advance to time T1.

t1 = t0 + dt;

u1 = rk4 ( t0, u0, dt, f3 );

// Shift the data.

t0 = t1;

u0 = u1;

}

return 0;

}

...plus text of f3() function...
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RK4:

Here is how Euler worked with steps as small as DT = 0.01.
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RK4:

Here is how the RK4 function worked with a step size DT = 0.1:
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ASSIGNMENT #8: A Second Order Initial Value Problem

Consider the following ODE:

d2u

dt2
=

u3

6
− u + 2 ∗ sin (2.7853 ∗ t)

with initial conditions:

t0 =0.0

u(t0) =0.0

du

dt
(t0) =0.0

which is to be solved up to tmax = 20.
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ASSIGNMENT #8: A Second Order Initial Value Problem

Rewrite this second order ODE as a pair of first order ODE’s.
Modify the program midpoint f7.cpp to solve the problem.

The correct solution at tmax = 20 has the values

u(20) =− 0.1004...

du

dt
(20) =0.2411...

I won’t tell you what stepsize to use. Try to find a value of dt
small enough so the first three digits of your answer match the
correct solution.

Sometimes the program takes one more step than expected, so be
sure you report the values corresponding to t = 20!
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ASSIGNMENT #8: Things to Turn in

Email to Detelina:

the stepsize dt that you used:

the values u(20) and du
dt (20) that you computed:

a copy of your program.

The program and output are due by Thursday, July 21.
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