

Intro Math Problem Solving
November 14

Unequal Probability Simulation
A Transition Model
Going to California
Hawaiian Population Movement
Matrix-Vector Multiplication

Reference

Chapter 7, Section 1 of our textbook “Insight
Through Computing” discusses the idea of a
transition matrix, that represents how a vector of
data changes from one step to the next, under a
linear transformation.

.

Unequal Probability Simulation

Random, Equally Likely

Often we are faced with the necessity of
simulating a random event which involves
choosing one of several possible outcomes:

Flip a coin, roll a die, or select a card from a deck.

We usually assume that the outcomes are equally
likely, and so we have gotten used to simulating
this process, using the MATLAB functions rand()
or randi().

Flipping a Coin

To simulate flipping a coin, we can call rand():

 r = rand ();

 if (r < 0.5)

 toss = 0; <- for “tails”

 else

 toss = 1; <- for “heads”

 end

or we could call randi(), with 0 = ‘T’ and 1 = ‘H’:

 toss = randi ([0, 1]);

Simulating the roll of a die

When simulating the roll of a die, we would much
prefer to use randi() because a single command
gives us a random value between 1 and 6:

 r = randi ([1, 6]);

However, we can also use rand(). To do so, we
will need many more commands.

We write two versions. The second version is
simplified because we are checking the results
in ascending order.

Rolling a die with rand()
r = rand (); r = rand ();

if (0 <= r && r < 1/6) if (r < 1/6)

 d = 1; d = 1;

elseif (1/6 <= r && r < 2/6) elseif (r < 2/6)

 d = 2; d = 2;

elseif (2/6 <= r && r < 3/6) elseif (r < 3/6)

 d = 3; d = 3;

elseif (3/6 <= r && r < 4/6) elseif (r < 4/6)

 d = 4; d = 4;

elseif (4/6 <= r && r < 5/6) elseif (r < 5/6)

 d = 5; d = 5;

elseif (5/6 <= r && r <= 1.0) else

 d = 6; d = 6;

end end

Unequal Likelihoods

If our coin is biased, or our die is loaded, or the deck
includes 3 copies of the ace of spades, then some
outcomes are more likely than others, and we need to
change our model.

If a coin has been tampered with so that it comes up
heads 60% of the time, our simulation needs to return a
value of “H” 60% of the time.

We can no longer use randi(), but we can adjust our
rand() approach to take care of the fact that the
outcomes are no longer equally likely:

40% Tails, 60% Heads

r = rand ();

if (r < 0.40)

 toss = 0;

else

 toss = 1;

end

A Loaded Die

Suppose that we observe a die rolled M = 1000 times, and tabulate the
frequencies F of the outcomes:

 1 2 3 4 5 6

 F: 120 130 140 160 200 250

Our estimated probabilities P are computed by dividing each frequency
by the total number of observations M = sum (F):

 1 2 3 4 5 6

 P: 0.120 0.130 0.140 0.160 0. 200 0.250

Since the probabilities are unequal, how can we simulate this behavior?

Cumulative Probability

 1 2 3 4 5 6

 P: 0.120 0.130 0.140 0.160 0. 200 0.250

If we pick a random value r, it makes sense that if
r is less than 0.120, we have outcome “1”.

But how do we get outcome 2? We need to give
it a likelihood of 0.130. Now if r falls between
0.120 and 0.120 + 0.130 = 0.250, the range
[0.120,0.250] has width 0.130, which will give us
the correct behavior.

Cumulative Probability

 1 2 3 4 5 6

 P: 0.120 0.130 0.140 0.160 0. 200 0.250

We need to divide the interval [0.0,1.0] into segments whose lengths are the
probabilities of the outcomes. The easiest way to do this is to add the
probabilities up from left to right to get cumulative probabilities C:

Outcome 1: 0.000 <= r < 0.120

Outcome 2: 0.120 <= r < 0.120 + 0.130 = 0.250

Outcome 3: 0.250 <= r < 0.120 + 0.130 + 0.140 = 0.390

Outcome 4: 0.390 <= r < 0.120 + 0.130 + 0.140 + 0.160 = 0.550

Outcome 5: 0.550 <= r < 0.120 + 0.130 + 0.140 + 0.160 + 0.200 = 0.750

Outcome 6: 0.750 <= r < 0.120 + 0.130 + 0.140 + 0.160 + 0.200 + 0.250 = 1.000

 1 2 3 4 5 6

 C: 0.120 0.250 0.390 0.550 0. 750 1.000

Computing Cumulative Probablities

Can we do this for any problem?

Suppose we are given P, the vector of probabilities of each outcome, and we need to compute C,
the cumulative probabilities. One way to do that is with a for loop:

c = zeros (1, n);

s = 0.0;

for i = 1 : n

 s = s + p(i);

 c(i) = s;

end

MATLAB can also do this for you in a single command:

 c = cumsum (p);

Simulating the Loaded Die
r = rand (); r = rand ();

if (0.0 <= r && r < C(1)) if (r < C(1))

 d = 1; d = 1;

elseif (C(1) <= r && r < C(2)) elseif (r < C(2))

 d = 2; d = 2;

elseif (C(2) <= r && r < C(3)) elseif (r < C(3))

 d = 3; d = 3;

elseif (C(3) <= r && r < C(4)) elseif (r < C(4))

 d = 4; d = 4;

elseif (C(4) <= r && r < C(5)) elseif (r < C(5))

 d = 5; d = 5;

elseif (C(5) <= r && r <= C(6)) else

 d = 6; d = 6;

end end

Simulating the Loaded Die

Since we have the cumulative probabilities in a vector, we can use a
FOR loop to do our simulation, which is simpler.

r = rand ();

for i = 1 : n

 if (r < c(i))

 outcome = i;

 break; % <- Why do we need to break?

 end

end

Example: A Loaded Die

I observe the rolling of a die M=700 times, getting the
following frequencies of outcomes:

 1 2 3 4 5 6

 F: 150 75 10 75 180 210

Probabilities, P = F/M:

 P: 0.21 0.11 0.01 0.11 0.26 0.30

Cumulative probabilities, C = cumsum(P):

 C: 0.21 0.32 0.33 0.44 0.70 1.00

700 Observations

Simulating the Loaded Die
m = 700;

n = 6;

bins = zeros (1, n);

for j = 1 : m

 r = rand ();

 for i = 1 : n

 if (r < c(i))

 bins(i) = bins(i) + 1;

 break;

 end

 end

end

bar (1:n, bins)

700 Simulations

Unequal Probability Summary

Given M observations, with N outcomes, create a vector F(1:N) which
counts the frequency of each outcome.

Compute probabilities: P = F / M;

Compute cumulative probabilities: C = cumsum(P);

To simulate an outcome, find the first C(I) such that

 rand() < C(I), and return outcome I.

To test, create a BIN (1:N) vector, simulate M outcomes, and store results in
BIN. Then compare two bar plots:

 bar (1:n, f) <- original observed data

 bar (1:n, bin) <- simulated data

You expect the two plots to be similar (but not identical!)

A Transition Model

System / States / Transitions

Some systems can be thought of as having a set
of possible states. The system is always in
some particular state.

At regular time intervals, the system can move (or
transition) from one state to another, or stay
where it is.

Each possible change has a known likelihood,
known as the transition probability.

The Transition Idea

An old proverb suggests that the best guess for
tomorrow’s weather is that it will be the same as
today’s.

Let us simplify each day’s weather into the three
states sunny, cloudy or rainy.

Even if we don’t understand weather, we can make
a simple transition model by recording the weather
every day, and noticing the likelihood of each
possible transition.

Transition Records

 Here is a calendar of 25 days of weather, recorded as sunny, cloudy, or
rainy:

C-S-S-C-R-R-C-C-R-C-R-C-R-S-S-S-C-R-R-S-S-C-C-S-R

This gives us 24 daily transitions, and we can tabulate their frequencies:

 S->S = 4 C->S = 2 R->S = 2

 S->C = 3 C->C = 2 R->C = 3

 S->R = 1 C->R = 5 R->R = 2

Transition Probabilities
From these daily transition frequencies:

 S->S = 4 C->S = 2 R->S = 2

 S->C = 3 C->C = 2 R->C = 3

 S->R = 1 C->R = 5 R->R = 2

 8 total 9 total 7 total

we can give us a 3x3 matrix of transition probabilities:

 S->S = 4/8 C->S = 2/9 R->S = 2/7

 S->C = 3/8 C->C = 2/9 R->C = 3/7

 S->R = 1/8 C->R = 5/9 R->R = 2/7

Simulation with rand()

If yesterday was sunny, can we simulate what will happen today?

 S->S = 4/8

 S->C = 3/8

 S->R = 1/8

Let R be the value of rand(), and work with the cumulative probabilities:

 If yesterday was sunny then:

 if 0 < R <= 4/8: sunny today

 elseif 4/8 < R <= 4/8 + 3/8: cloudy today

 elseif 4/8 + 3/8 < R < 4/8+3/8+1/8: rainy today

Similarly, we can simulate the followup to a cloudy or rainy day.

Weather Model
function today = weather_today (yesterday)

r = rand ()

if (yesterday == 'S')

 if (r < 4.0 / 8.0)

 today = 'S';

 elseif (r < 7.0 / 8.0)

 today = 'C';

 else

 today = 'R';

 end

 elseif (yesterday == 'C')

 if (r < 2.0 / 9.0)

 today = 'S';

 elseif (r < 4.0 / 9.0)

 today = 'C';

 else

 today = 'R';

 end

 elseif (yesterday == 'R')

 if (r < 2.0 / 7.0)

 today = 'S';

 elseif (r < 5.0 / 7.0)

 today = 'C';

 else

 today = 'R';

 end

 end

Simulating More Weather

If we believe our transition probabilities are reasonable, we can simulate more weather, by noting
yesterday's weather and choosing today's weather based on the probabilities;

for i = 0 : 50

 if (i == 0)

 today = 'S';

 else

 today = weather_today (today);

 end

 fprintf ('%c', today);

end

fprintf ('\n');

SSCCRSCCRRRCSSRSCRRSSSRSCRRSSSCRRSSSSCRCSCRCRCSSSSS

Transition Matrix

The table of probabilities is known as the transition probability matrix P.
Entry P(i,j) of the matrix records the probability that we will have state i
today, given that yesterday was state j.

Replacing fractions with decimals, our weather transition matrix is:

 Yesterday

 S C R

 S: 4/8 2/9 2/7

Today C: 3/8 2/9 3/7

 R: 1/8 5/9 2/7

Sum: 1 1 1

Every column sums to 1, because whatever happened yesterday,
something must happen today!

Cumulative Probability Matrix
P stores the probabilities,

 Yesterday

 S C R

 S: 4/8 2/9 2/7

Today C: 3/8 2/9 3/7

 R: 1/8 5/9 2/7

The cumulative probability matrix C comes from the cumsum() command:

C = cumsum (P);

 S: 4/8 2/9 2/7 0.50 0.22 0.29

Today C: 7/8 4/9 5/7 = 0.87 0.44 0.57

 R: 8/8 9/9 7/7 1.00 1.00 1.00

Simulating with a Matrix

 P = [4/8, 2/9, 2/7; ...

 3/8, 2/9, 3/7; ...

 1/8, 5/9, 2/7];

 C = cumsum (P);

 r = rand ();

 for i = 1 : 3

 if (r < C(i,yesterday))

 today = i;

 break;

 end

 end

Going to California

Modeling Population Changes

For a while in the 1960's, the following statement was approximately true:

 Every year, 30% of the population of California leaves the state, and

 every year, 10% of the population of the other states moves to California.

1) The statement sounds nonsensical. Can we write down some equations that give us
numbers we can think about?

2) If 30% move out, and 10% move it, does this mean California is gradually going to
have no population at all?

3) If this behavior lasts long enough, does the population curve of California look
chaotic, go towards infinity, become negative, or oscillatory, or does it settle down?

One Person's Behavior

Suppose we model one person's behavior during
this time, and assume that in 1960 they are
living in California. Then there's a 30% chance
they move out in 1961.

In 1962, if they are still in California, there's a
30% chance they move out then; but if they are
outside of California, there's a 10% chance they
move in.

We could simulate the location of such a person
for 20 years if we wish.

One Person's History
m = 51;

for i = 1:m

 year = 1959 + i;

 if (i == 1)

 s = 'C';

 else

 r = rand ();

 if (s == 'C')

 if (r < 0.30)

 s = 'U';

 end

 elseif (s == 'U')

 if (r < 0.10)

 s = 'C';

 end

 end

 end

end

CCCUUUUUUUUUUUUUUUUUCUUUUUUUCCCCUUUUUUUUCUUUUUUUUUU

Model EVERYBODY

Suppose that in 1960, California's population was
16 million, and the remaining US population was
164 million.

Then in 1961, our transition data suggests:

 * 30% of 16 million people moved OUT of CA.

 * 10% of 164 million people moved INTO CA.

In fact, we can track the CA and US populations
from year to year, if we believe our model.

california.m
m = 21;

ca = zeros (1, m);

us = zeros (1, m);

for i = 1 : m

 year = 1959 + i;

 if (year == 1960)

 ca(i) = 16000000;

 us(i) = 164000000;

 else

 [ca(i), us(i)] = california_update (ca(i-1), us(i-1));

 end

end

california_update.m

function [ca, us] = california_update (ca, us)

 ca_old = ca;

 us_old = us;

 us = 0.90 * us_old + 0.30 * ca_old;

 ca = 0.10 * us_old + 0.70 * ca_old;

 return

end

1960 to 1970

 Year CA Pop US pop Total

 1960 16000000 164000000 180000000

 1961 27600000 152400000 180000000

 1962 34560000 145440000 180000000

 1963 38736000 141264000 180000000

 1964 41241600 138758400 180000000

 1965 42744960 137255040 180000000

 1966 43646976 136353024 180000000

 1967 44188186 135811814 180000000

 1968 44512911 135487089 180000000

 1969 44707747 135292253 180000000

 1970 44824648 135175352 180000000

Reaching an Equilibrium?

There is a Natural Balance Point

The population data seems to be driving towards values of 45 million
for California and 135 million for the rest of the US.

If we plug these values into our formula:

 us = 0.90 * us_old + 0.30 * ca_old;

 ca = 0.10 * us_old + 0.70 * ca_old;

the new values are the same as the old:

135m = 0.90 * 135m + 0.30 * 45m

 45m = 0.10 * 135m + 0.70 * 45m

Hawaiian Population Movement

Hawaii Migration
Our textbook considers a more complicated example involving

four Hawaiian islands, Oahu, Kauai, Maui and Lanai.

Suppose in the year 2000 each island had one million
inhabitants, but we had the following transition data for
moving from one island to another:

 Last Year:

 OA KA MA LA

 OA 0.32 0.17 0.11 0.46

This KA 0.18 0.43 0.32 0.33

Year: MA 0.27 0.22 0.39 0.14

 LA 0.23 0.18 0.18 0.07

 Sum 1.00 1.00 1.00 1.00

What the Matrix Means

Row I describes all the places a person moving to
island I can come from, with a probability. Thus,
next year's population of Lanai will be 23% of
Oahu's population, 18% of Kauai's population,
and so on.

Column J describes all the places a person on
island J can go to, with a probability. Thus, 32%
of the Oahu residents stay on Oahu, 18% move
to Kauai, and so on.

hawaii_update.m
function [oa, ka, ma, la] = hawaii_update (oa, ka, ma, la)

 oa_old = oa;

 ka_old = ka;

 ma_old = ma;

 la_old = la;

 oa = 0.32 * oa_old + 0.17 * ka_old + 0.11 * ma_old + 0.46 * la_old;

 ka = 0.18 * oa_old + 0.43 * ka_old + 0.32 * ma_old + 0.33 * la_old;

 ma = 0.27 * oa_old + 0.22 * ka_old + 0.39 * ma_old + 0.14 * la_old;

 la = 0.23 * oa_old + 0.18 * ka_old + 0.18 * ma_old + 0.07 * la_old;

 return

end

Quick Changes, Then Settling

 Year Oahu Kauai Maui Lanai Total

 ---- ---------- ---------- ---------- ---------- ----------

 2000 1000000 1000000 1000000 1000000 4000000

 2001 1060000 1260000 1020000 660000 4000000

 2002 969200 1276800 1053600 700400 4000000

 2003 965280 1291764 1051540 691416 4000000

 2004 962210 1293869 1051713 692208 4000000

 2005 961969 1294538 1051525 691968 4000000

Population Settles Down

Matrix-Vector Multiplication

CA Transition Method #1

Let's look at the California population problem again. If we
had the California and US populations from last year, we
estimated the populations next year by this procedure:

 ca_old = ca;

 us_old = us;

 us = 0.90 * us_old + 0.30 * ca_old;

 ca = 0.10 * us_old + 0.70 * ca_old;

CA Transition Method #2

It's a little neater to keep the probabilities in a matrix P. We could keep
the poputations in a vector "pop". Then our calculation becomes:

 P = [0.90, 0.30;

 0.10, 0.70];

 pop_old = pop;

 pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

 pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);

CA Transition Method #3

We can use a FOR loop to rewrite

 pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

 pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);

As:

 for i = 1 : 2

 pop(i) = P(i,1) * pop_old(1) + P(i,2) * pop_old(2);

 end

CA Transition Method #4

But we can actually write the whole operation in a simple form using
the rules of matrix-vector multiplication in linear algebra:

 pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

 pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);

is rewritten as:

 pop = P * pop_old;

Note that pop and pop_old must be column vectors. Also note that P
* pop_old does not use the "dot" notation for multiplication!

Matrix-Vector Multiplication

We have just seen a linear algebra operation called
matrix-vector multiplication.

In this case, the rules for "pop = P * pop_old" are

To get item 1 of pop, combine row 1 of P with the
entries of pop_old:

 pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2)

To get item 2 of pop, combine row 2 of P with the
entries of pop_old:

 pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2)

Example #1
Matrix-vector multiplication gives us a short way to represent

and compute the operations we were doing for transitions.

Let's look at some examples:

A = [0.90, 0.30;

 0.10, 0.70];

v = [200;

 100]; <- Column vector

w = A * v = [0.90 * 200 + 0.30 * 100; = [180 + 30; = [210;

 0.10 * 200 + 0.70 * 100] 20 + 70]; 90];

Example #2

A = [1, 2;

 3, 4];

v = [50;

 60]; <- Column vector

w = A * v = [1 * 50 + 2 * 60; = [50 + 120; = [170;

 3 * 50 + 4 * 60] 150 + 240]; 390];

Example #3

A = [2, 6, 5;

 3, 2, 0;

 4, 1, 7];

v1 = [1; v2 = [10;

 0, 20;

 1]; 30]; <- Column vectors

w1 = A * v1 = 2*1 + 6*0 +5*1 = [2 + 0 + 5; = [7;

 3*1 + 2*0 + 0*1 3 + 0 + 0; 3;

 4*1 + 1*0 + 7*1 4 + 0 + 7]; 11];

w2 = A * v2 = [2 * 10 + 6 * 20 + 5 * 30; = [20 + 120 + 150; = [290;

 3 * 10 + 2 * 20 + 0 * 30; 30 + 40 + 0; 70;

 4 * 10 + 1 * 20 + 7 * 30]; 40 + 20 + 210]; 270];

Conclusion

The transition model is a simple system that
simulates repeated change that can be
described by probablities.

The probabilities can be stored in a matrix P.

We can simulate changes to one individual case,
or the expected behavior of big populations.

Transitions can be described in terms of matrix-
vector multiplication.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

