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Reference

Chapter 7, Section 1 of our textbook “Insight 
Through Computing” discusses the idea of a 
transition matrix, that represents how a vector of 
data changes from one step to the next, under a 
linear transformation.
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Unequal Probability Simulation



  

Random, Equally Likely

Often we are faced with the necessity of 
simulating a random event which involves 
choosing one of several possible outcomes:

Flip a coin, roll a die, or select a card from a deck.

We usually assume that the outcomes are equally 
likely, and so we have gotten used to simulating 
this process, using the MATLAB functions rand() 
or randi().



  

Flipping a Coin

To simulate flipping a coin, we can call rand():

       r = rand ();

       if ( r < 0.5 )

         toss = 0;   <- for “tails”

       else

         toss = 1;  <- for “heads”

       end

or we could call randi(), with 0 = ‘T’ and 1 = ‘H’:

       toss = randi ( [ 0, 1 ] );



  

Simulating the roll of a die

When simulating the roll of a die, we would much 
prefer to use randi() because a single command 
gives us a random value between 1 and 6:

      r = randi ( [ 1, 6 ] );

However, we can also use rand().  To do so, we 
will need many more commands.  

We write two versions.  The second version is 
simplified because we are checking the results 
in ascending order.



  

Rolling a die with rand()
r = rand ( );                                                                r = rand ( );

if (  0 <= r && r < 1/6 )                                              if ( r < 1/6 )

  d = 1;                                                                         d = 1;

elseif ( 1/6 <= r && r < 2/6 )                                    elseif ( r < 2/6 )

  d = 2;                                                                         d = 2;

elseif ( 2/6 <= r && r < 3/6 )                                    elseif ( r < 3/6 )

  d = 3;                                                                        d = 3;

elseif ( 3/6 <= r &&  r < 4/6 )                                   elseif ( r < 4/6 )

  d = 4;                                                                        d = 4;

elseif ( 4/6 <= r && r < 5/6 )                                    elseif ( r < 5/6 )

  d = 5;                                                                        d = 5;

elseif ( 5/6 <= r && r <= 1.0 )                                 else

  d = 6;                                                                        d = 6;

end                                                                          end



  

Unequal Likelihoods

If our coin is biased, or our die is loaded, or the deck 
includes 3 copies of the ace of spades, then some 
outcomes are more likely than others, and we need to 
change our model.

If a coin has been tampered with so that it comes up 
heads 60% of the time, our simulation needs to return a 
value of “H” 60% of the time.

We can no longer use randi(), but we can adjust our 
rand() approach to take care of the fact that the 
outcomes are no longer equally likely:



  

40% Tails, 60% Heads

r = rand ( );

if ( r < 0.40 )

  toss = 0;

else

  toss = 1;

end



  

A Loaded Die

Suppose that we observe a die rolled M = 1000 times, and tabulate the 
frequencies F of the outcomes:

              1       2     3      4      5      6

     F:    120  130  140  160  200  250

Our estimated probabilities P are computed by dividing each frequency 
by the total number of observations M = sum ( F ):

               1          2          3          4          5          6

     P:    0.120   0.130   0.140   0.160  0. 200   0.250

Since the probabilities are unequal, how can we simulate this behavior?



  

Cumulative Probability

             1          2          3          4          5          6

   P:    0.120   0.130   0.140   0.160  0. 200   0.250

If we pick a random value r, it makes sense that if 
r is less than 0.120, we have outcome “1”.

But how do we get outcome 2?  We need to give 
it a likelihood of 0.130.  Now if r falls between 
0.120 and 0.120 + 0.130 = 0.250, the range 
[0.120,0.250] has width 0.130, which will give us 
the correct behavior. 



  

Cumulative Probability

              1          2          3          4          5          6

     P:   0.120   0.130   0.140   0.160  0. 200   0.250

 

We need to divide the interval [0.0,1.0] into segments whose lengths are the 
probabilities of the outcomes.  The easiest way to do this is to add the 
probabilities up from left to right to get cumulative probabilities C:

Outcome 1: 0.000 <= r < 0.120

Outcome 2: 0.120 <= r < 0.120 + 0.130 = 0.250

Outcome 3: 0.250 <= r < 0.120 + 0.130 + 0.140 = 0.390

Outcome 4: 0.390 <= r < 0.120 + 0.130 + 0.140 + 0.160 = 0.550

Outcome 5: 0.550 <= r < 0.120 + 0.130 + 0.140 + 0.160 + 0.200 = 0.750

Outcome 6: 0.750 <= r < 0.120 + 0.130 + 0.140 + 0.160 + 0.200 + 0.250 = 1.000 

              1          2          3          4          5          6

     C:   0.120   0.250   0.390   0.550  0. 750   1.000



  

Computing Cumulative Probablities

Can we do this for any problem?

Suppose we are given P, the vector of probabilities of each outcome, and we need to compute C, 
the cumulative probabilities.  One way to do that is with a for loop:

c = zeros ( 1, n );

s = 0.0;

for i = 1 : n

  s = s + p(i);

  c(i) = s;

end

MATLAB can also do this for you in a single command:

  c = cumsum ( p );



  

Simulating the Loaded Die
r = rand ( );                                                              r = rand ( );

if (  0.0 <= r && r < C(1) )                                        if ( r < C(1) )

  d = 1;                                                                       d = 1;

elseif ( C(1) <= r && r < C(2) )                                elseif ( r < C(2) )

  d = 2;                                                                       d = 2;

elseif ( C(2) <= r && r < C(3) )                                elseif ( r < C(3) )

  d = 3;                                                                       d = 3;

elseif ( C(3) <= r &&  r < C(4) )                               elseif ( r < C(4) )

  d = 4;                                                                       d = 4;

elseif ( C(4) <= r && r < C(5) )                                elseif ( r < C(5) )

  d = 5;                                                                       d = 5;

elseif ( C(5) <= r && r <= C(6) )                              else

  d = 6;                                                                       d = 6;

end                                                                          end



  

Simulating the Loaded Die

Since we have the cumulative probabilities in a vector, we can use a 
FOR loop to do our simulation, which is simpler.

r = rand ( ); 

for i = 1 : n

  if ( r < c(i) )

    outcome = i;

    break;            %   <- Why do we need to break?

  end

end



  

Example: A Loaded Die

I observe the rolling of a die M=700 times, getting the 
following frequencies of outcomes:

             1     2     3     4       5     6

     F:  150   75   10   75  180  210

Probabilities, P = F/M:

     P:  0.21  0.11  0.01  0.11  0.26  0.30

Cumulative probabilities, C = cumsum(P):

     C: 0.21  0.32  0.33  0.44  0.70  1.00



  

700 Observations



  

Simulating the Loaded Die
m = 700;

n = 6;

bins = zeros ( 1, n );

for j = 1 : m

  r = rand ( ); 

  for i = 1 : n

    if ( r < c(i) )

      bins(i) = bins(i) + 1;

      break;

    end

  end

end

bar ( 1:n, bins )



  

700 Simulations



  

Unequal Probability Summary

Given M observations, with N outcomes, create a vector F(1:N) which 
counts the frequency of each outcome.

Compute probabilities: P = F / M;

Compute cumulative probabilities: C = cumsum(P);

To simulate an outcome, find the first C(I) such that 

    rand() < C(I), and return outcome I. 

To test, create a BIN (1:N) vector, simulate M outcomes, and store results in 
BIN.  Then compare two bar plots: 

      bar ( 1:n, f )         <- original observed data

      bar ( 1:n, bin)      <- simulated data

You expect the two plots to be similar (but not identical!)



  

A Transition Model



  

System / States / Transitions

Some systems can be thought of as having a set 
of possible states.  The system is always in 
some particular state.  

At regular time intervals, the system can move (or 
transition) from one state to another, or stay 
where it is.

Each possible change has a known likelihood, 
known as the transition probability.



  

The Transition Idea

An old proverb suggests that the best guess for 
tomorrow’s weather is that it will be the same as 
today’s.

Let us simplify each day’s weather into the three 
states sunny, cloudy or rainy.

Even if we don’t understand weather, we can make 
a simple transition model by recording the weather 
every day, and noticing the likelihood of each 
possible transition.



  

Transition Records

 Here is a calendar of 25 days of weather, recorded as sunny, cloudy, or 
rainy:

C-S-S-C-R-R-C-C-R-C-R-C-R-S-S-S-C-R-R-S-S-C-C-S-R

This gives us 24 daily transitions, and we can tabulate their frequencies:

  S->S = 4    C->S = 2   R->S = 2

  S->C = 3    C->C = 2   R->C = 3

  S->R = 1    C->R = 5   R->R = 2

 



  

Transition Probabilities
From these daily transition frequencies:

  S->S = 4    C->S = 2   R->S = 2

  S->C = 3    C->C = 2   R->C = 3

  S->R = 1    C->R = 5   R->R = 2

  8 total         9 total       7 total

we can give us a 3x3 matrix of transition probabilities:

  S->S = 4/8    C->S = 2/9   R->S = 2/7

  S->C = 3/8    C->C = 2/9   R->C = 3/7

  S->R = 1/8    C->R = 5/9   R->R = 2/7



  

Simulation with rand()

If yesterday was sunny, can we simulate what will happen today?

  S->S = 4/8    

  S->C = 3/8    

  S->R = 1/8

Let R be the value of rand(), and work with the cumulative probabilities:

  If yesterday was sunny then:

    if         0 < R <= 4/8:                                                          sunny today

    elseif                  4/8 < R <= 4/8 + 3/8:                               cloudy today

   elseif                                     4/8 + 3/8 < R < 4/8+3/8+1/8:  rainy today

Similarly, we can simulate the followup to a cloudy or rainy day.



  

Weather Model
function today = weather_today ( yesterday )

r = rand ( )

if ( yesterday == 'S' )

    if ( r < 4.0 / 8.0 )

      today = 'S';

    elseif ( r < 7.0 / 8.0 ) 

      today = 'C';

    else

      today = 'R';

    end

  elseif ( yesterday == 'C' )

    if ( r < 2.0 / 9.0 )

      today = 'S';

    elseif ( r < 4.0 / 9.0 )

      today = 'C';

    else

      today = 'R';

    end

  elseif ( yesterday == 'R' )

    if ( r < 2.0 / 7.0 )

      today = 'S';

    elseif ( r < 5.0 / 7.0 )

      today = 'C';

    else

      today = 'R';

    end

  end



  

Simulating More Weather

If we believe our transition probabilities are reasonable, we can simulate more weather, by noting 
yesterday's weather and choosing today's weather based on the probabilities;

for i = 0 : 50

  if ( i == 0 )

    today = 'S';

  else

    today = weather_today ( today );

  end

  fprintf ( '%c', today );

end

fprintf ( '\n' ); 

SSCCRSCCRRRCSSRSCRRSSSRSCRRSSSCRRSSSSCRCSCRCRCSSSSS



  

Transition Matrix

The table of probabilities is known as the transition probability matrix P.  
Entry P(i,j) of the matrix records the probability that we will have state i 
today, given that yesterday was state j.

Replacing fractions with decimals, our weather transition matrix is:

                                  Yesterday

                           S         C        R

                  S:    4/8       2/9     2/7

Today        C:    3/8       2/9     3/7

                  R:    1/8      5/9      2/7

                          ----------------------

Sum:                   1         1         1

Every column sums to 1, because whatever happened yesterday, 
something must happen today!



  

Cumulative Probability Matrix
P stores the probabilities,

                              Yesterday

                           S         C        R

                  S:    4/8       2/9     2/7

Today        C:    3/8       2/9     3/7

                  R:    1/8      5/9      2/7 

The cumulative probability matrix C comes from the cumsum() command:

C = cumsum ( P );

                  S:    4/8       2/9     2/7           0.50  0.22  0.29  

Today        C:    7/8       4/9     5/7       =  0.87  0.44  0.57

                  R:    8/8       9/9     7/7          1.00  1.00  1.00



  

Simulating with a Matrix

  P = [ 4/8, 2/9, 2/7; ...

          3/8, 2/9, 3/7; ...

          1/8, 5/9, 2/7 ];

  C = cumsum ( P );

  r = rand ( );

  for i = 1 : 3

    if ( r < C(i,yesterday) )

      today = i;

      break;

    end

  end



  

Going to California



  

Modeling Population Changes

For a while in the 1960's, the following statement was approximately true:

  Every year, 30% of the population of California leaves the state, and

   every year, 10% of the population of the other states moves to California.

1) The statement sounds nonsensical.  Can we write down some equations that give us 
numbers we can think about?

2) If 30% move out, and 10% move it, does this mean California is gradually going to 
have no population at all?

3) If this behavior lasts long enough, does the population curve of California look 
chaotic, go towards infinity, become negative, or oscillatory, or does it settle down?



  

One Person's Behavior

Suppose we model one person's behavior during 
this time, and assume that in 1960 they are 
living in California.  Then there's a 30% chance 
they move out in 1961.  

In 1962, if they are still in California, there's a 
30% chance they move out then; but if they are 
outside of California, there's a 10% chance they 
move in.

We could simulate the location of such a person 
for 20 years if we wish.  



  

One Person's History
m = 51;

for i = 1:m

  year = 1959 + i;

  if ( i == 1 )

    s = 'C';

  else

    r = rand ( );

    if ( s == 'C' )

      if ( r < 0.30 )

        s = 'U';

      end

    elseif ( s == 'U' )

      if ( r < 0.10 )

        s = 'C';

      end

    end

  end

end

CCCUUUUUUUUUUUUUUUUUCUUUUUUUCCCCUUUUUUUUCUUUUUUUUUU



  

Model EVERYBODY

Suppose that in 1960, California's population was 
16 million, and the remaining US population was 
164 million.  

Then in 1961, our transition data suggests:

  * 30% of 16 million people moved OUT of CA.

  * 10% of 164 million people moved INTO CA. 

In fact, we can track the CA and US populations 
from year to year, if we believe our model.



  

california.m
m = 21;

ca = zeros ( 1, m );

us = zeros ( 1, m );

for i = 1 : m

  year = 1959 + i;

  if ( year == 1960 )

    ca(i) =  16000000;

    us(i) = 164000000;

  else

    [ ca(i), us(i) ] = california_update ( ca(i-1), us(i-1) );

  end

end



  

california_update.m

function [ ca, us ] = california_update ( ca, us )

  ca_old = ca;

  us_old = us;

  us = 0.90 * us_old + 0.30 * ca_old;

  ca = 0.10 * us_old + 0.70 * ca_old;

  return

end



  

1960 to 1970

    Year     CA Pop     US pop      Total

  1960   16000000  164000000  180000000

  1961   27600000  152400000  180000000

  1962   34560000  145440000  180000000

  1963   38736000  141264000  180000000

  1964   41241600  138758400  180000000

  1965   42744960  137255040  180000000

  1966   43646976  136353024  180000000

  1967   44188186  135811814  180000000

  1968   44512911  135487089  180000000

  1969   44707747  135292253  180000000

  1970   44824648  135175352  180000000



  

Reaching an Equilibrium? 



  

There is a Natural Balance Point

The population data seems to be driving towards values of 45 million 
for California and 135 million for the rest of the US.

If we plug these values into our formula:

  us = 0.90 * us_old + 0.30 * ca_old;

  ca = 0.10 * us_old + 0.70 * ca_old;

the new values are the same as the old:

 

135m = 0.90 * 135m + 0.30 * 45m

  45m = 0.10 * 135m + 0.70 * 45m



  

Hawaiian Population Movement



  

Hawaii Migration
Our textbook considers a more complicated example involving 

four Hawaiian islands, Oahu, Kauai, Maui and Lanai.

Suppose in the year 2000 each island had one million 
inhabitants, but we had the following transition data for 
moving from one island to another:

                                  Last Year:

            OA    KA    MA    LA

      OA  0.32  0.17  0.11  0.46

This  KA  0.18  0.43  0.32  0.33

Year: MA  0.27  0.22  0.39  0.14

      LA  0.23  0.18  0.18  0.07

      Sum 1.00  1.00  1.00  1.00 



  

What the Matrix Means

Row I describes all the places a person moving to 
island I can come from, with a probability.  Thus, 
next year's population of Lanai will be 23% of 
Oahu's population, 18% of Kauai's population, 
and so on. 

Column J describes all the places a person on 
island J can go to, with a probability.  Thus, 32% 
of the Oahu residents stay on Oahu, 18% move 
to Kauai, and so on.



  

hawaii_update.m
function [ oa, ka, ma, la ] = hawaii_update ( oa, ka, ma, la )

  oa_old = oa;

  ka_old = ka;

  ma_old = ma;

  la_old = la;

  oa = 0.32 * oa_old + 0.17 * ka_old + 0.11 * ma_old + 0.46 * la_old;

  ka = 0.18 * oa_old + 0.43 * ka_old + 0.32 * ma_old + 0.33 * la_old;

  ma = 0.27 * oa_old + 0.22 * ka_old + 0.39 * ma_old + 0.14 * la_old;

  la = 0.23 * oa_old + 0.18 * ka_old + 0.18 * ma_old + 0.07 * la_old;

  return

end



  

Quick Changes, Then Settling

  Year        Oahu       Kauai        Maui       Lanai       Total

  ----  ----------  ----------  ----------  ----------  ----------

  2000     1000000     1000000     1000000     1000000     4000000

  2001     1060000     1260000     1020000      660000     4000000

  2002      969200     1276800     1053600      700400     4000000

  2003      965280     1291764     1051540      691416     4000000

  2004      962210     1293869     1051713      692208     4000000

  2005      961969     1294538     1051525      691968     4000000



  

Population Settles Down



  

Matrix-Vector Multiplication



  

CA Transition Method #1

Let's look at the California population problem again.  If we 
had the California and US populations from last year, we 
estimated the populations next year by this procedure:

  ca_old = ca;

  us_old = us;

  us = 0.90 * us_old + 0.30 * ca_old;

  ca = 0.10 * us_old + 0.70 * ca_old;



  

CA Transition Method #2

It's a little neater to keep the probabilities in a matrix P.  We could keep 
the poputations in a vector "pop".  Then our calculation becomes:

  P = [ 0.90, 0.30;

          0.10, 0.70];

  pop_old = pop;

  pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

  pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);



  

CA Transition Method #3

We can use a FOR loop to rewrite

  pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

  pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);

As:

  for i = 1 : 2

    pop(i) = P(i,1) * pop_old(1) + P(i,2) * pop_old(2);

  end



  

CA Transition Method #4

But we can actually write the whole operation in a simple form using 
the rules of matrix-vector multiplication in linear algebra:

  pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2);

  pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2);

is rewritten as:

  pop = P * pop_old;

Note that pop and pop_old must be column vectors.  Also note that P 
* pop_old does not use the "dot" notation for multiplication!



  

Matrix-Vector Multiplication

We have just seen a linear algebra operation called 
matrix-vector multiplication.  

In this case, the rules for "pop = P * pop_old" are

To get item 1 of pop, combine row 1 of P with the 
entries of pop_old:

  pop(1) = P(1,1) * pop_old(1) + P(1,2) * pop_old(2) 

To get item 2 of pop, combine row 2 of P with the 
entries of pop_old:

  pop(2) = P(2,1) * pop_old(1) + P(2,2) * pop_old(2) 



  

Example #1
Matrix-vector multiplication gives us a short way to represent 

and compute the operations we were doing for transitions.

Let's look at some examples:

A = [ 0.90, 0.30;

        0.10, 0.70];

v = [ 200; 

        100 ];       <- Column vector

w = A * v = [ 0.90 * 200 + 0.30 * 100; = [ 180 + 30;  = [ 210;

                    0.10 * 200 + 0.70 * 100 ]       20 + 70 ];       90 ];



  

Example #2

A = [ 1, 2;

        3, 4];

v = [ 50; 

        60 ];       <- Column vector

w = A * v = [ 1 * 50 + 2 * 60;   =   [  50 + 120;  = [ 170;

                    3 * 50 + 4 * 60 ]        150 + 240 ];      390 ];



  

Example #3

A = [ 2, 6, 5;

        3, 2, 0;

        4, 1, 7];

v1 = [ 1;          v2 = [ 10;

          0,                    20;

         1 ];                  30 ];     <- Column vectors

w1 = A * v1 = 2*1 + 6*0 +5*1 = [ 2 + 0 + 5;  =  [ 7;

                     3*1 + 2*0 + 0*1      3 + 0 + 0;        3;

                     4*1 + 1*0 + 7*1      4 + 0 + 7];      11 ];

w2 = A * v2 = [ 2 * 10 + 6 * 20 + 5 * 30;   = [ 20 + 120 + 150;  = [ 290;

                       3 * 10 + 2 * 20 + 0 * 30;        30 +   40 +     0;         70;

                       4 * 10 + 1 * 20 + 7 * 30 ];      40 +   20 + 210];      270 ];



  

Conclusion

The transition model is a simple system that 
simulates repeated change that can be 
described by probablities.

The probabilities can be stored in a matrix P.

We can simulate changes to one individual case, 
or the expected behavior of big populations.

Transitions can be described in terms of matrix-
vector multiplication. 
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