

Intro Math Problem Solving
November 9

A Forest Fire Model
A Predator Prey Model
A Disease Model
A Linear Transition Model
Homework #10

Reference

Chapter 7, Section 1 of our textbook “Insight
Through Computing” discusses the idea of a
transition matrix, that represents how a vector
of data changes from one step to the next,
under a linear transformation.

.

Things That Change Over Time

All around us, things change with time. A forest fire starts, a
seed is planted, a single body cell turns cancerous.

Observing the current conditions, we may be able to predict the
future, if we understand the rules by which a system changes.

The standard mathematical technique for doing this involves
differential equations, which is beyond the scope of this
course.

We can use some simpler techniques to illustrate this prediction
process, which starts with a model of a system, and then
estimates the changes that occur in a series of small steps.

Forest Fires

Forest Fires

On a computer, of course, a forest becomes a rectangular
array of trees.

We imagine that one tree has begun burning, perhaps
because it was struck by lightning; it will burn for 1 time
unit and then be consumed.

Depending on dryness and wind, neighboring trees have a
certain probability p of catching fire from a burning
neighbor.

We are interested in the typical percentage of the forest
that will be destroyed in such a fire.

A Forest Model

Let T be an MxN array, with each entry (I,J)
representing a single tree in the forest.

The value of T(I,J) will represent the current
“state” of the tree:

 0: untouched

 1: burning

 2: burnt

A Forest Change Model

How trees may change from one step to the next:

 unburnt:

 if a neighbor is burning, then

 with probability p, this tree changes to burning

 burning: changes to burnt

 burnt: does not change

Initialization

Create the MxN array T.

Set time step to 0.

Initialize all entries of T to “unburnt”.

Set one entry of T to “burning” (lightning hit?)

Display the current forest.

The Fire Starts at a Random Tree

Next Step

Let Told store a copy of T.

Set STEP = STEP + 1

For each tree Tij in the forest

 if Tij was UNBURNT then

 each BURNING neighbor has a probability P of setting this tree on fire

 else if Tij was BURNING

 it is now BURNT

We make decisions using the OLD values, in Told, and we carry out our
decisions by updating values in T.

“Neighbors” of Tree Tij

 N NW – N – NE

 | | | |

 W – C – E W – C – E

 | | | |

 S SW – S – SE

We could use 4 neighbors or 8.

8 Neighbors Convenient

The 8 neighbor idea is convenient, because it means
we can easily describe the neighborhood even
when a tree is on the boundary:

 im1 = max (i – 1, 1);

 ip1 = min (i + 1, m);

 jm1 = max (j – 1, 1);

 jp1 = min (j + 1, n);

 NABES = T(im1:ip1,jm1:jp1);

Counting BURNING Neighbors

NABES = T(im1:ip1,jm1:jp1);

K = (NABES == BURNING); ← 3x3 array of 0 and 1

k_num = sum (sum (K)); ← sum(sum for arrays

%

% Every burning neighbor gets a chance to light T(i,j).

%

for k = 1 : k_num

 if (rand () < prob)

 T(i,j) = BURNING;

 end

end

Fire Progresses Through Forest

Stop When No Tree is Burning

The fire is out when no tree is burning.

This condition is easy to check.

FIRE = (T == BURNING);

if (sum (sum (FIRE)) == 0)

 break

end

Stop When No Tree is Burning

Measurable Results

We can count the percent of the forest that was
burned, or the length in hours of the fire.

We can count the number of separate areas of
unburned trees.

We can look at how these measures of damage are
related to the probability of the fire spreading from
one tree to the next.

It’s not hard to add features to this simple model that
allow us to make a more realistic simulation.

Fancier Models

Wind has a strong influence on the direction and degree to
which a fire spreads.

A forest often includes cleared areas intended to stop or delay
the spread of fire. Where should they be? How wide should
a cleared area be?

Fire prefers to move uphill, so topography matters.

Fire sends up burning cinders that can land far away, allowing
the fire to make big jumps.

Forests are a combination of grassland, brush, and trees of
different types and ages, which resist fire in different ways.

Predator/Prey Population Model

Tracking Two Populations

Suppose we are monitoring the number of foxes and
rabbits in an isolated valley, by conducting a count
each month.

We could imagine storing our data in two vectors or
lists,

 F = [F(1), F(2), F(3), ..., F(N)]

 R = [F(1), R(2), R(3), ..., R(N)]

We’d like to see if a computer model can simulate this
situation.

Simple Population Growth

Recall we looked at a model for population growth in
Mexico. If "b" was the chance that 1 person would
have 1 baby in 1 time period, then we had the model:

 P(t+1) = P(t) + b * P(t) = (1 + b) * P(t).

Here "1+b" can be thought of as:

 1 = everyone who was alive is still alive

 b = some babies are added to the population

The result was a kind of exponential growth.

Complications

Keeping track of two populations wouldn’t be much
harder than one population, except that we know
that foxes and rabbits “interact”.

In particular, while rabbits can depend on a steady
food supply of grass and clover, foxes need to eat
rabbits, or they will starve.

So both populations have tendencies to grow or
decrease, and the size of one population affects
the survival chances of the other.

Interaction Model
A particular model has growth AND death parts:

A) Rabbits:

 growth: = +0.001 * R(t) death: = - 0.000002 * F(t)*R(t)

B) Foxes:

 death: = -0.005 * F(t) growth: +0.0000015 * R(t)*F(t)

So in a month, a rabbit has 1/thousand chance of adding a baby to the
population, and a fox has a 5/thousand chance of dying (by starvation).

F(t)*R(t) measures the chance that any fox will meet any rabbit in the
month. There is a 2/million chance that any given rabbit will die because
of such an encounter; there is a 1.5/million that a baby fox will be born
because a rabbit was caught and eaten.

Follow Populations for M months

gr = 0.001; dr = 0.000002; df = -0.005; gf =0.0000015 ;

R = zeros (1, m); F = zeros (1, m);

for t = 1 : m

 if (t == 1)

 R(1) = 5000;

 F(1) = 100;

 else

 R(t+1) = (1.0 + gr) * R(t) – dr * F(t) * R(t);

 F(t+1) = (1.0 + df) * F(t) + gf * F(t) * R(t);

 end

end

M=100 Steps

M=1000 Steps

M=2000 Steps

M=5000 Steps

M=10,000 Steps

Plot Comments

M=100: we see very little change. The system does
changes, but over a longer time than this.

M=1000: rabbits are disappearing, foxes rule!

M=2000: rabbits recover a bit, foxes die out.

M=5000: both populations have a double peak

M=10000: the systems are periodic!

For a pair of periodic variables, we can plot the “phase
plane”, which here is R(T) versus F(T).

The “Phase Plane”

Phase Plane Clues

The phase plane plot emphasizes the idea that, at
least in our model, the fox and rabbit
populations rise and fall over a large range, but
follow a cycle that ensures that neither group
dies out.

Because this corresponds to what we see in real
life, we have a feeling that our predator-prey
model has successfully imitated some features
of this living example.

A Disease Model

The SIR Disease Model

Many diseases are spread from one person to another; often, if a
person contracts the disease, when they recover, they are
immune and can’t get the disease again.

The SIR disease model tries to simulate this kind of epidemic; it
estimates the likelihood of transmission and the duration of the
disease.

It asks why sometimes a disease outbreak is very limited, and
other times becames an epidemic.

This is another case that is best handled by using differential
equations; we will use a simplified approach that will still allow
us to explore this idea.

Three Kinds of People

To put together our model, we will suppose that we
have N people in a population.

Each person is in one of three classes:

 S: “susceptible”: could get the disease

 I: “infectious”: has the disease and can transmit it

 R: “recovered”: no longer has the disease, can’t
transmit it, and can’t get it again.

Two Changes

At any time t, our population is divided into S(t), I(t) and
R(t) people. Over a short time step, each person
encounters another person.

S-> I: Each susceptible person meets someone. I/N of
these people are infectious. “b” or “beta” is the chance
that an encounter with an infectious person will transmit
the disease.

I->R: By the next time step, some I people can recover;
the likelihood of this depends on a recovery rate “g” or
“gamma”.

A Peek at Differential Equations

Interpret Differential Equations

These differential equations have a meaning:

The change in S over time is a decrease,
proportional to beta, the number of S people,
and the proportion of infected people (I/N).

The change in I over time is the newly infected S
people, minus the I people who recover.

The change in R over time is the I people who
have recovered.

Simplified Differential Equations

(S(t+dt)-S(t)) / dt = -beta * S(t) * I(t) / N

(I(t+dt)-I(t)) / dt = +beta * S(t) * I(t) / N – gamma * I(t)

(R(t+dt)-R(t)) / dt = + gamma * I(t)

S(t+dt) = S(t) + dt * (-beta * S(t) * I(t) / N)

I(t+dt) = I(t) + dt * (+beta * S(t) * I(t) / N – gamma * I(t))

R(t+dt) = R(t) + dt * (+ gamma * I(t))

S(i+1) = S(i) - BETA * S(i) * I(i) / N

I(i+1) = I(i) + BETA * S(i) * I(i) / N – GAMMA * I(i)

R(i+1) = R(i) + GAMMA * I(i)

sir.m

function [S, I, R] = sir (m, beta, gamma)

 S = zeros (1, m);

 I = zeros (1, m);

 R = zeros (1, m);

 for i = 1 : m

 if (i == 1)

 S(i) = 99;

 I(i) = 1;

 R(i) = 0;

 N = S(i) + I(i) + R(i);

 else

 S(i) = S(i-1) - beta * S(i-1) * I(i-1) / N;

 I(i) = I(i-1) + beta * S(i-1) * I(i-1) / N - gamma * I(i-1);

 R(i) = R(i-1) + gamma * I(i-1);

 end

 end

Study Infectious Rate Beta

Beta measures how easy it is to catch the
disease.

We’ll fix gamma at 0.005, and look at what
happens as we decrease Beta.

Each time, the disease takes longer to “settle
down”, and the number of people who never get
the disease increases.

Beta = 0.02, 0.01, 0.0075

Beta = 0.02, 0.01, 0.0075

Beta = 0.02, 0.01, 0.0075

Study Recovery Rate Gamma

Gamma measures how quickly one recovers from
the disease.

We’ll fix beta at 0.0075, and look at what happens
as we decrease gamma from 0.006, 0.005,
0.004.

By slowing down the recovery rate, an infectious
person has more time to infect more people,
and the disease becomes more widespread.

Gamma = 0.006, 0.005, 0.004

Gamma = 0.006, 0.005, 0.004

Gamma = 0.006, 0.005, 0.004

Observations

At any one time, most people aren’t sick; all other
things being equal, the value of gamma
(recovery rate) controls how long people are
sick, and hence how many are sick at any one
time.

The transmissibility (beta) controls how fast the
disease spreads. If beta is high enough,
everyone is going to get the disease.

A Transition Matrix

System / States / Transitions

Some systems can be thought of as having a set
of possible states. The system is always in
some particular state.

At regular time intervals, the system can move (or
transition) from one state to another, or stay
where it is.

Each possible change has a known likelihood,
known as the transition probability.

The Transition Idea

An old proverb suggests that the best guess for
tomorrow’s weather is that it will be the same as
today’s.

Let us simplify each day’s weather into the three
states sunny, cloudy or rainy.

Even if we don’t understand weather, we can make
a simple transition model by recording the
weather every day, and noticing the likelihood of
each possible transition.

Transition Records

 Here is a calendar of 25 days of weather, recorded as sunny,
cloudy, or rainy:

C-S-S-C-R-R-R-C-R-C-R-C-R-S-S-S-C-R-R-S-S-C-C-S-R

This gives us 24 daily transitions, and we can tabulate their
frequencies:

 S->S = 4 S->C = 3 S->R = 1

 C->S = 2 C->C = 1 C->R = 5

 R->S = 2 R->C = 3 R->R = 3

Transition Probabilities

From these daily transition frequencies:

 S->S = 4 S->C = 3 S->R = 1 8 total transitions of S to something

 C->S = 2 C->C = 1 C->R = 5 8 total transitions of C to something

 R->S = 2 R->C = 3 R->R = 3 8 total transitions of R to something

we can give us a 3x3 matrix of transition probabilities:

 S->S = 4/8 S->C = 3/8 S->R = 1/8

 C->S = 2/8 C->C = 1/8 C->R = 5/8

 R->S = 2/8 R->C = 3/8 R->R = 3/8

Simulation with rand()

If yesterday was sunny, can we simulate what will happen today?

 S->S = 4/8 S->C = 3/8 S->R = 1/8

Let P be the value of rand():

 If yesterday was sunny then:

 if P <= 4/8: sunny today

 elseif 4/8 < P <= 4/8 + 3/8: cloudy today

 elseif 4/8 + 3/8 < P: rainy today

Similarly, we can simulate the followup to a cloudy or rainy day.

Weather Model
function today = weather_today (yesterday)

r = rand ()

if (yesterday == ‘Sunny’)

 if (r < 0.5)

 today = ‘Sunny’;

 elseif (r < 0.875)

 today = ‘Cloudy’

 else

 today = ‘Rainy’

 end

elseif (yesterday == ‘Cloudy’)

 if (r < 0.25)

 today = ‘Sunny’;

 elseif (r < 0.375)

 today = ‘Cloudy’

 else

 today = ‘Rainy’

 end

elseif (yesterday == ‘Rainy’)

 if (r < 0.25)

 today = ‘Sunny’;

 elseif (r < 0.625)

 today = ‘Cloudy’

 else

 today = ‘Rainy’

 end

end

Simulating More Weather

If we believe our transition probabilities are reasonable, we can simulate more weather, by noting
yesterday's weather and choosing today's weather based on the probabilities;

for i = 0 : 50

 if (i == 0)

 today = 'S';

 else

 today = weather_today (today);

 end

 fprintf ('%c', today);

end

fprintf ('\n');

SSCCRSCCRRRCSSRSCRRSSSRSCRRSSSCRRSSSSCRCSCRCRCSSSSS

Transition Matrix

The table of probabilities is known as the transition matrix. Entry
(i,j) of the matrix records the probability that, if we were in state i
previously, we are going to move to state j.

Replacing fractions with decimals, our weather transition matrix is:

 Today

 S C R Sum

 S: 0.500 0.375 0.125 1.000

Yesterday C: 0.250 0.125 0.625 1.000

 R: 0.250 0.375 0.375 1.000

Every row sums to 1, because whatever happened yesterday,
something must happen today!

Modeling Population Changes

For a while in the 1960's, the following statement was approximately true:

 Every year, 30% of the population of California leaves the state, and

 every year, 10% of the population of the other states moves to California.

1) The statement sounds nonsensical. Can we write down some equations that give us
numbers we can think about?

2) If 30% move out, and 10% move it, does this mean California is gradually going to
have no population at all?

3) If this behavior lasts long enough, does the population curve of California look
chaotic, go towards infinity, become negative, or oscillatory, or does it settle down?

One Person's Behavior

Suppose we model one person's behavior during
this time, and assume that in 1960 they are
living in California. Then there's a 30% chance
they move out in 1961.

In 1962, if they are still in California, there's a
30% chance they move out then; but if they are
outside of California, there's a 10% chance they
move in.

We could simulate the location of such a person
for 20 years if we wish.

One Person's History
m = 51;

for i = 1:m

 year = 1959 + i;

 if (i == 1)

 s = 'C';

 else

 r = rand ();

 if (s == 'C')

 if (r < 0.30)

 s = 'U';

 end

 elseif (s == 'U')

 if (r < 0.10)

 s = 'C';

 end

 end

 end

end

CCCUUUUUUUUUUUUUUUUUCUUUUUUUCCCCUUUUUUUUCUUUUUUUUUU

Model EVERYBODY

Suppose that in 1960, California's population was
16 million, and the remaining US population was
164 million.

Then in 1961, our transition data suggests:

 * 30% of 16 million people moved OUT of CA.

 * 10% of 164 million people moved INTO CA.

In fact, we can track the CA and US populations
from year to year, if we believe our model.

california.m
m = 21;

ca = zeros (1, m);

us = zeros (1, m);

for i = 1 : m

 year = 1959 + i;

 if (year == 1960)

 ca(i) = 16000000;

 us(i) = 164000000;

 else

 [ca(i), us(i)] = california_update (ca(i-1), us(i-1));

 end

end

california_update.m

function [ca, us] = california_update (ca, us)

 ca_old = ca;

 us_old = us;

 us = us_old - 0.10 * us_old + 0.30 * ca_old;

 ca = ca_old + 0.10 * us_old - 0.30 * ca_old;

 return

end

1960 to 1970

 Year CA Pop US pop Total

 1960 16000000 164000000 180000000

 1961 27600000 152400000 180000000

 1962 34560000 145440000 180000000

 1963 38736000 141264000 180000000

 1964 41241600 138758400 180000000

 1965 42744960 137255040 180000000

 1966 43646976 136353024 180000000

 1967 44188186 135811814 180000000

 1968 44512911 135487089 180000000

 1969 44707747 135292253 180000000

 1970 44824648 135175352 180000000

Reaching an Equilibrium?

There is a Natural Balance Point

The population data seems to be driving towards values of 45 million
for California and 135 million for the rest of the US.

If we plug these values into our formula:

 us = us_old - 0.10 * us_old + 0.30 * ca_old;

 ca = ca_old + 0.10 * us_old - 0.30 * ca_old;

the new values are the same as the old:

135m = 135m – 0.10 * 135m + 0.30 * 45m

 45m = 45m + 0.10 * 135m – 0.30 * 45m

Case #2: Hawaii

Our textbook considers a more complicated example
involving four Hawaiian islands, Oahu, Kauai, Maui
and Lanai.

Suppose in the year 2000 each island had one million
inhabitants, but we had the following transition data for
moving from one island to another:

 OA KA MA LA (sum)

OA 0.32 0.18 0.27 0.23 1.00

KA 0.17 0.43 0.22 0.18 1.00

MA 0.11 0.32 0.39 0.18 1.00

LA 0.46 0.33 0.14 0.07 1.00

What the Matrix Means

Row I of that matrix describes all the places a
person on island I can go to, with a probability.
Thus, 32% of the Oahu residents stay on Oahu,
17% move to Kauai, and so on.

Column J of the matrix describes all the places a
person moving to island J can come from, with
a probability. Thus, next year's population of
Lanai will be 23% of Oahu's population, 18% of
Kauai's population, and so on.

hawaii_update.m
function [oa, ka, ma, la] = hawaii_update (oa, ka, ma, la)

 oa_old = oa;

 ka_old = ka;

 ma_old = ma;

 la_old = la;

 oa = 0.32 * oa_old + 0.17 * ka_old + 0.11 * ma_old + 0.46 * la_old;

 ka = 0.18 * oa_old + 0.43 * ka_old + 0.32 * ma_old + 0.33 * la_old;

 ma = 0.27 * oa_old + 0.22 * ka_old + 0.39 * ma_old + 0.14 * la_old;

 la = 0.23 * oa_old + 0.18 * ka_old + 0.18 * ma_old + 0.07 * la_old;

 return

end

Quick Changes, Then Settling

 Year Oahu Kauai Maui Lanai Total

 ---- ---------- ---------- ---------- ---------- ----------

 2000 1000000 1000000 1000000 1000000 4000000

 2001 1060000 1260000 1020000 660000 4000000

 2002 969200 1276800 1053600 700400 4000000

 2003 965280 1291764 1051540 691416 4000000

 2004 962210 1293869 1051713 692208 4000000

 2005 961969 1294538 1051525 691968 4000000

Population Settles Down

The Transition Matrix

The calculations we have done with the transition
matrix are actually a tiny taste of linear algebra.

For the Hawaii population problem, if we call the old
population xold and next year's population xnew, and
we call the transition matrix A, then in linear algebra,
it makes sense to say

 xnew = A * xold

MATLAB will let us set up calculations this way; we will
soon see some examples of how to do this.

Homework #10

hw050: Create a contour plot of a function that represents a "valley".

hw051: Create a surface plot of a function that exhibits four
 deep depressions.

hw052: Use the contour() function to draw a family of ellipses.

Homework #10 is due by midnight, Friday November 17th.

Homework #9 is due by tomorrow night.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

