
  

Intro Math Problem Solving
November 9

A Forest Fire Model
A Predator Prey Model
A Disease Model
A Linear Transition Model
Homework #10



  

Reference

Chapter 7, Section 1 of our textbook “Insight 
Through Computing” discusses the idea of a 
transition matrix, that represents how a vector 
of data changes from one step to the next, 
under a linear transformation.

 

.



  

Things That Change Over Time

All around us, things change with time.  A forest fire starts, a 
seed is planted, a single body cell turns cancerous.  

Observing the current conditions, we may be able to predict the 
future, if we understand the rules by which a system changes.

The standard mathematical technique for doing this involves 
differential equations, which is beyond the scope of this 
course.

We can use some simpler techniques to illustrate this prediction 
process, which starts with a model of a system, and then 
estimates the changes that occur in a series of small steps.



  

Forest Fires



  

Forest Fires

On a computer, of course, a forest becomes a rectangular 
array of trees.

We imagine that one tree has begun burning, perhaps 
because it was struck by lightning; it will burn for 1 time 
unit and then be consumed.

Depending on dryness and wind, neighboring trees have a 
certain probability p of catching fire from a burning 
neighbor.

We are interested in the typical percentage of the forest 
that will be destroyed in such a fire.



  

A Forest Model

Let T be an MxN array, with each entry (I,J) 
representing a single tree in the forest.

The value of T(I,J) will represent the current 
“state” of the tree:

  0: untouched

  1: burning

  2: burnt



  

A Forest Change Model

How trees may change from one step to the next:

  unburnt: 

    if a neighbor is burning, then 

      with probability p, this tree changes to burning

  burning: changes to burnt

  burnt: does not change



  

Initialization

Create the MxN array T.

Set time step to 0.

Initialize all entries of T to “unburnt”.

Set one entry of T to “burning” (lightning hit?)

Display the current forest.



  

The Fire Starts at a Random Tree



  

Next Step

Let Told store a copy of T.

Set STEP = STEP + 1

For each tree Tij in the forest

  if Tij was UNBURNT then

    each BURNING neighbor has a probability P of setting this tree on fire

  else if Tij was BURNING

    it is now BURNT

We make decisions using the OLD values, in Told, and we carry out our 
decisions by updating values in T.

   



  

“Neighbors” of Tree Tij

             N                 NW – N – NE

              |                    |        |       |

 W  – C – E     W – C – E

      |         |   |   |

      S        SW – S – SE

We could use 4 neighbors or 8.  



  

8 Neighbors Convenient

The 8 neighbor idea is convenient, because it means 
we can easily describe the neighborhood even 
when a tree is on the boundary:

      im1 = max ( i – 1, 1 );

      ip1 = min ( i + 1, m );

      jm1 = max ( j – 1, 1 );

      jp1 = min ( j + 1, n );

      NABES = T(im1:ip1,jm1:jp1);



  

Counting BURNING Neighbors

NABES = T(im1:ip1,jm1:jp1);

K = ( NABES == BURNING );  ← 3x3 array of 0 and 1

k_num = sum ( sum ( K ) );  ← sum(sum for arrays

%

%  Every burning neighbor gets a chance to light T(i,j).

%

for k = 1 : k_num

  if ( rand ( ) < prob )

    T(i,j) = BURNING;

  end

end



  

Fire Progresses Through Forest



  

Stop When No Tree is Burning

The fire is out when no tree is burning.

This condition is easy to check.

FIRE = ( T == BURNING );

if ( sum ( sum ( FIRE ) ) == 0 )

  break

end



  

Stop When No Tree is Burning



  

Measurable Results

We can count the percent of the forest that was 
burned, or the length in hours of the fire.

We can count the number of separate areas of 
unburned trees.

We can look at how these measures of damage are 
related to the probability of the fire spreading from 
one tree to the next.

It’s not hard to add features to this simple model that  
allow us to make a more realistic simulation.



  

Fancier Models

Wind has a strong influence on the direction and degree to 
which a fire spreads.  

A forest often includes cleared areas intended to stop or delay 
the spread of fire.  Where should they be?  How wide should 
a cleared area be?

Fire prefers to move uphill, so topography matters.

Fire sends up burning cinders that can land far away, allowing 
the fire to make big jumps.

Forests are a combination of grassland, brush, and trees of 
different types and ages, which resist fire in different ways.



  

Predator/Prey Population Model



  

Tracking Two Populations

Suppose we are monitoring the number of foxes and 
rabbits in an isolated valley, by conducting a count 
each month.  

We could imagine storing our data in two vectors or 
lists,

    F = [ F(1), F(2), F(3), ..., F(N) ]

    R = [ F(1), R(2), R(3), ..., R(N) ]

We’d like to see if a computer model can simulate this 
situation.



  

Simple Population Growth

Recall we looked at a model for population growth in 
Mexico.  If "b" was the chance that 1 person would 
have 1 baby in 1 time period, then we had the model:

      P(t+1) = P(t) + b * P(t) = ( 1 + b ) * P(t).

Here "1+b" can be thought of as:

  1 = everyone who was alive is still alive

   b = some babies are added to the population

The result was a kind of exponential growth.



  

Complications

Keeping track of two populations wouldn’t be much 
harder than one population, except that we know 
that foxes and rabbits “interact”.

In particular, while rabbits can depend on a steady 
food supply of grass and clover, foxes need to eat 
rabbits, or they will starve.

So both populations have tendencies to grow or 
decrease, and the size of one population affects  
the survival chances of the other.



  

Interaction Model
A particular model has growth AND death parts:

A) Rabbits: 

    growth: = +0.001 * R(t)       death: = - 0.000002 * F(t)*R(t)

B) Foxes:   

     death: = -0.005 * F(t)        growth: +0.0000015 * R(t)*F(t)    

So in a month, a rabbit has 1/thousand chance of adding a baby to the 
population, and a fox has a 5/thousand  chance of dying (by starvation).

F(t)*R(t) measures the chance that any fox will meet any rabbit in the 
month.  There is a 2/million chance that any given rabbit will die because 
of such an encounter; there is a 1.5/million that a baby fox will be born 
because a rabbit was caught and eaten.

     



  

Follow Populations for M months

gr = 0.001; dr = 0.000002; df = -0.005; gf =0.0000015 ;

R = zeros ( 1, m ); F = zeros ( 1, m );

for t = 1 : m

  if ( t == 1 )

    R(1) = 5000;

    F(1) = 100;

  else

    R(t+1) = ( 1.0 + gr ) * R(t) – dr * F(t) * R(t);

    F(t+1) = ( 1.0 + df ) * F(t) + gf * F(t) * R(t);

  end

end 



  

M=100 Steps



  

M=1000 Steps



  

M=2000 Steps



  

M=5000 Steps



  

M=10,000 Steps



  

Plot Comments

M=100: we see very little change.  The system does 
changes, but over a longer time than this.

M=1000: rabbits are disappearing, foxes rule!

M=2000: rabbits recover a bit, foxes die out.

M=5000: both populations have a double peak

M=10000: the systems are periodic!

For a pair of periodic variables, we can plot the “phase 
plane”, which here is R(T) versus F(T).



  

The “Phase Plane”



  

Phase Plane Clues

The phase plane plot emphasizes the idea that, at 
least in our model, the fox and rabbit 
populations rise and fall over a large range, but 
follow a cycle that ensures that neither group 
dies out.

Because this corresponds to what we see in real 
life, we have a feeling that our predator-prey 
model has successfully imitated some features 
of this living example.



  

A Disease Model



  

The SIR Disease Model

Many diseases are spread from one person to another; often, if a 
person contracts the disease, when they recover, they are 
immune and can’t get the disease again.

The SIR disease model tries to simulate this kind of epidemic; it 
estimates the likelihood of transmission and the duration of the 
disease.

It asks why sometimes a disease outbreak is very limited, and 
other times becames an epidemic.

This is another case that is best handled by using differential 
equations; we will use a simplified approach that will still allow 
us to explore this idea. 



  

Three Kinds of People

To put together our model, we will suppose that we 
have N people in a population.

Each person is in one of three classes:

  S: “susceptible”: could get the disease

   I: “infectious”: has the disease and can transmit it

   R: “recovered”: no longer has the disease, can’t 
transmit it, and can’t get it again.



  

Two Changes

At any time t, our population is divided into S(t), I(t) and 
R(t) people.  Over a short time step, each person 
encounters another person.  

S-> I: Each susceptible person meets someone.  I/N of 
these people are infectious.  “b” or “beta” is the chance 
that an encounter with an infectious person will transmit 
the disease.  

I->R: By the next time step, some I people can recover; 
the likelihood of this depends on a recovery rate “g” or 
“gamma”.



  

A Peek at Differential Equations



  

Interpret Differential Equations

These differential equations have a meaning:

The change in S over time is a decrease, 
proportional to beta, the number of S people, 
and the proportion of infected people (I/N).

The change in I over time is the newly infected S 
people, minus the I people who recover.

The change in R over time is the I people who 
have recovered.



  

Simplified Differential Equations

(S(t+dt)-S(t)) / dt = -beta * S(t) * I(t) / N

(I(t+dt)-I(t)) / dt = +beta * S(t) * I(t) / N – gamma * I(t)

(R(t+dt)-R(t)) / dt =                         + gamma * I(t)

S(t+dt) = S(t) + dt * ( -beta * S(t) * I(t) / N )

I(t+dt) = I(t) + dt * ( +beta * S(t) * I(t) / N – gamma * I(t) )

R(t+dt) = R(t) + dt * (                         + gamma * I(t) )

S(i+1) = S(i) - BETA * S(i) * I(i) / N 

I(i+1) = I(i) + BETA * S(i) * I(i) / N – GAMMA * I(i)

R(i+1) = R(i)                          + GAMMA * I(i)



  

sir.m

function [ S, I, R ] = sir ( m, beta, gamma )

  S = zeros ( 1, m );

  I = zeros ( 1, m );

  R = zeros ( 1, m );

  for i = 1 : m

    if ( i == 1 )

      S(i) = 99;

      I(i) = 1;

      R(i) = 0;

      N = S(i) + I(i) + R(i);

    else

      S(i) = S(i-1) - beta * S(i-1) * I(i-1) / N;

      I(i) = I(i-1) + beta * S(i-1) * I(i-1) / N - gamma * I(i-1);

      R(i) = R(i-1)                              + gamma * I(i-1);

    end

  end



  

Study Infectious Rate Beta

Beta measures how easy it is to catch the 
disease.  

We’ll fix gamma at 0.005, and look at what 
happens as we decrease Beta. 

Each time, the disease takes longer to “settle 
down”, and the number of people who never get 
the disease increases.



  

Beta = 0.02, 0.01, 0.0075



  

Beta = 0.02, 0.01, 0.0075



  

Beta = 0.02, 0.01, 0.0075



  

Study Recovery Rate Gamma

Gamma measures how quickly one recovers from 
the disease.  

We’ll fix beta at 0.0075, and look at what happens 
as we decrease gamma from 0.006, 0.005, 
0.004. 

By slowing down the recovery rate, an infectious 
person has more time to infect more people, 
and the disease becomes more widespread.



  

Gamma = 0.006, 0.005, 0.004



  

Gamma = 0.006, 0.005, 0.004



  

Gamma = 0.006, 0.005, 0.004



  

Observations

At any one time, most people aren’t sick; all other 
things being equal, the value of gamma 
(recovery rate) controls how long people are 
sick, and hence how many are sick at any one 
time.

The transmissibility (beta) controls how fast the 
disease spreads.    If beta is high enough, 
everyone is going to get the disease.



  

A Transition Matrix



  

System / States / Transitions

Some systems can be thought of as having a set 
of possible states.  The system is always in 
some particular state.  

At regular time intervals, the system can move (or 
transition) from one state to another, or stay 
where it is.

Each possible change has a known likelihood, 
known as the transition probability.



  

The Transition Idea

An old proverb suggests that the best guess for 
tomorrow’s weather is that it will be the same as 
today’s.

Let us simplify each day’s weather into the three 
states sunny, cloudy or rainy.

Even if we don’t understand weather, we can make 
a simple transition model by recording the 
weather every day, and noticing the likelihood of 
each possible transition.



  

Transition Records

 Here is a calendar of 25 days of weather, recorded as sunny, 
cloudy, or rainy:

C-S-S-C-R-R-R-C-R-C-R-C-R-S-S-S-C-R-R-S-S-C-C-S-R

This gives us 24 daily transitions, and we can tabulate their 
frequencies:

  S->S = 4    S->C = 3    S->R = 1

  C->S = 2    C->C = 1    C->R = 5

  R->S = 2    R->C = 3    R->R = 3



  

Transition Probabilities

From these daily transition frequencies:

  S->S = 4  S->C = 3  S->R = 1       8 total transitions of S to something

  C->S = 2  C->C = 1  C->R = 5      8 total transitions of C to something

  R->S = 2  R->C = 3  R->R = 3      8 total transitions of R to something

we can give us a 3x3 matrix of transition probabilities:

  S->S = 4/8  S->C = 3/8  S->R = 1/8

  C->S = 2/8  C->C = 1/8  C->R = 5/8

  R->S = 2/8  R->C = 3/8  R->R = 3/8



  

Simulation with rand()

If yesterday was sunny, can we simulate what will happen today?

  S->S = 4/8    S->C = 3/8    S->R = 1/8

Let P be the value of rand():

  If yesterday was sunny then:

    if P <= 4/8:                                    sunny today

      elseif 4/8 < P <= 4/8 + 3/8:         cloudy today

                        elseif 4/8 + 3/8 < P:  rainy today

Similarly, we can simulate the followup to a cloudy or rainy day.



  

Weather Model
function today = weather_today ( yesterday )

r = rand ( )

if ( yesterday == ‘Sunny’ )

   if ( r < 0.5 )

     today = ‘Sunny’;

   elseif ( r < 0.875 )

     today = ‘Cloudy’

   else

     today = ‘Rainy’

   end

elseif ( yesterday == ‘Cloudy’ )

  if ( r < 0.25 )

     today = ‘Sunny’;

   elseif ( r < 0.375 )

     today = ‘Cloudy’

   else

     today = ‘Rainy’

   end

elseif ( yesterday == ‘Rainy’ )

  if ( r < 0.25 )

    today = ‘Sunny’;

  elseif ( r < 0.625 )

    today = ‘Cloudy’

  else

    today = ‘Rainy’

  end

end



  

Simulating More Weather

If we believe our transition probabilities are reasonable, we can simulate more weather, by noting 
yesterday's weather and choosing today's weather based on the probabilities;

for i = 0 : 50

  if ( i == 0 )

    today = 'S';

  else

    today = weather_today ( today );

  end

  fprintf ( '%c', today );

end

fprintf ( '\n' ); 

SSCCRSCCRRRCSSRSCRRSSSRSCRRSSSCRRSSSSCRCSCRCRCSSSSS



  

Transition Matrix

The table of probabilities is known as the transition matrix.  Entry 
(i,j) of the matrix records the probability that, if we were in state i 
previously, we are going to move to state j.

Replacing fractions with decimals, our weather transition matrix is:

                                  Today

                           S         C        R          Sum

                  S:  0.500  0.375  0.125       1.000

Yesterday  C:  0.250  0.125  0.625       1.000

                  R:  0.250  0.375  0.375       1.000

Every row sums to 1, because whatever happened yesterday, 
something must happen today!



  

Modeling Population Changes

For a while in the 1960's, the following statement was approximately true:

  Every year, 30% of the population of California leaves the state, and

   every year, 10% of the population of the other states moves to California.

1) The statement sounds nonsensical.  Can we write down some equations that give us 
numbers we can think about?

2) If 30% move out, and 10% move it, does this mean California is gradually going to 
have no population at all?

3) If this behavior lasts long enough, does the population curve of California look 
chaotic, go towards infinity, become negative, or oscillatory, or does it settle down?



  

One Person's Behavior

Suppose we model one person's behavior during 
this time, and assume that in 1960 they are 
living in California.  Then there's a 30% chance 
they move out in 1961.  

In 1962, if they are still in California, there's a 
30% chance they move out then; but if they are 
outside of California, there's a 10% chance they 
move in.

We could simulate the location of such a person 
for 20 years if we wish.  



  

One Person's History
m = 51;

for i = 1:m

  year = 1959 + i;

  if ( i == 1 )

    s = 'C';

  else

    r = rand ( );

    if ( s == 'C' )

      if ( r < 0.30 )

        s = 'U';

      end

    elseif ( s == 'U' )

      if ( r < 0.10 )

        s = 'C';

      end

    end

  end

end

CCCUUUUUUUUUUUUUUUUUCUUUUUUUCCCCUUUUUUUUCUUUUUUUUUU



  

Model EVERYBODY

Suppose that in 1960, California's population was 
16 million, and the remaining US population was 
164 million.  

Then in 1961, our transition data suggests:

  * 30% of 16 million people moved OUT of CA.

  * 10% of 164 million people moved INTO CA. 

In fact, we can track the CA and US populations 
from year to year, if we believe our model.



  

california.m
m = 21;

ca = zeros ( 1, m );

us = zeros ( 1, m );

for i = 1 : m

  year = 1959 + i;

  if ( year == 1960 )

    ca(i) =  16000000;

    us(i) = 164000000;

  else

    [ ca(i), us(i) ] = california_update ( ca(i-1), us(i-1) );

  end

end



  

california_update.m

function [ ca, us ] = california_update ( ca, us )

  ca_old = ca;

  us_old = us;

  us = us_old - 0.10 * us_old + 0.30 * ca_old;

  ca = ca_old + 0.10 * us_old - 0.30 * ca_old;

  return

end



  

1960 to 1970

    Year     CA Pop     US pop      Total

  1960   16000000  164000000  180000000

  1961   27600000  152400000  180000000

  1962   34560000  145440000  180000000

  1963   38736000  141264000  180000000

  1964   41241600  138758400  180000000

  1965   42744960  137255040  180000000

  1966   43646976  136353024  180000000

  1967   44188186  135811814  180000000

  1968   44512911  135487089  180000000

  1969   44707747  135292253  180000000

  1970   44824648  135175352  180000000



  

Reaching an Equilibrium? 



  

There is a Natural Balance Point

The population data seems to be driving towards values of 45 million 
for California and 135 million for the rest of the US.

If we plug these values into our formula:

  us = us_old - 0.10 * us_old + 0.30 * ca_old;

  ca = ca_old + 0.10 * us_old - 0.30 * ca_old;

the new values are the same as the old:

 

135m = 135m – 0.10 * 135m + 0.30 * 45m

  45m =   45m + 0.10 * 135m – 0.30 * 45m



  

Case #2: Hawaii

Our textbook considers a more complicated example 
involving four Hawaiian islands, Oahu, Kauai, Maui 
and Lanai.

Suppose in the year 2000 each island had one million 
inhabitants, but we had the following transition data for 
moving from one island to another:

      OA    KA    MA    LA      (sum)

OA  0.32  0.18  0.27  0.23      1.00

KA  0.17  0.43  0.22  0.18      1.00

MA  0.11  0.32  0.39  0.18      1.00

LA  0.46  0.33  0.14  0.07      1.00



  

What the Matrix Means

Row I of that matrix describes all the places a 
person on island I can go to, with a probability.  
Thus, 32% of the Oahu residents stay on Oahu, 
17% move to Kauai, and so on.

Column J of the matrix describes all the places a 
person moving to island J can come from, with 
a probability.  Thus, next year's population of 
Lanai will be 23% of Oahu's population, 18% of 
Kauai's population, and so on. 



  

hawaii_update.m
function [ oa, ka, ma, la ] = hawaii_update ( oa, ka, ma, la )

  oa_old = oa;

  ka_old = ka;

  ma_old = ma;

  la_old = la;

  oa = 0.32 * oa_old + 0.17 * ka_old + 0.11 * ma_old + 0.46 * la_old;

  ka = 0.18 * oa_old + 0.43 * ka_old + 0.32 * ma_old + 0.33 * la_old;

  ma = 0.27 * oa_old + 0.22 * ka_old + 0.39 * ma_old + 0.14 * la_old;

  la = 0.23 * oa_old + 0.18 * ka_old + 0.18 * ma_old + 0.07 * la_old;

  return

end



  

Quick Changes, Then Settling

  Year        Oahu       Kauai        Maui       Lanai       Total

  ----  ----------  ----------  ----------  ----------  ----------

  2000     1000000     1000000     1000000     1000000     4000000

  2001     1060000     1260000     1020000      660000     4000000

  2002      969200     1276800     1053600      700400     4000000

  2003      965280     1291764     1051540      691416     4000000

  2004      962210     1293869     1051713      692208     4000000

  2005      961969     1294538     1051525      691968     4000000



  

Population Settles Down



  

The Transition Matrix

The calculations we have done with the transition 
matrix are actually a tiny taste of linear algebra.

For the Hawaii population problem, if we call the old 
population xold and next year's population xnew, and 
we call the transition matrix A, then in linear algebra, 
it makes sense to say

        xnew = A * xold

MATLAB will let us set up calculations this way; we will 
soon see some examples of how to do this.



 

Homework #10

hw050: Create a contour plot of a function that represents a "valley".
 
hw051: Create a surface plot of a function that exhibits four
              deep depressions.

hw052: Use the contour() function to draw a family of ellipses.

Homework #10 is due by midnight, Friday November 17th.

Homework #9 is due by tomorrow night.
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