Intro to Math Problem Solving October 12

A "bumps" function
A few more function rules
Graphics functions
A triangle function
The WRAP function
The GAP Game
Random quadratic equations
Homework \#6

A "bumps" function

As a reminder of how functions work, let's set up a MATLAB function for the mathematical function defined here:

$$
2
$$

$$
-2
$$

z = -------------------- + -----------------------

$$
e^{(x-1 / 2)^{\wedge} 2+y^{\wedge} 2} e^{(x+1 / 2)^{\wedge} 2+y^{\wedge} 2}
$$

bumps.m

function $z=$ bumps (x, y)
\%\% BUMPS evaluates a function $z(x, y)$ that has a bump up and one down.
\%
$\% X, Y$, are the evaluation point. X and Y can be vectors or arrays.
\%
$\% \mathrm{Z}$ is the function value at (X, Y).
\%

$$
\begin{gathered}
\left.z=2.0 . / \exp ((x-0.5))^{\wedge} 2+y .^{\wedge} 2\right) \ldots \\
-2.0 . / \exp \left((x+0.5) .^{\wedge} 2+y .^{\wedge} 2\right) ;
\end{gathered}
$$

return
end

Insight Through

Check with a plot?

Being able to see your work is huge help in catching errors. We can't call plot() because z is a function of two variables instead of 1.
However, MATLAB has a surf() function which can display functions $z(x, y)$.
To use it, we need to create TABLES (or arrays or matrices) of X, Y, and Z data.

bumps_surf.m

$x=$ linspace $(-2.0,+2.0,101) ; \quad \leftarrow$ make x and y lists. This is familiar.
$y=$ linspace $(-2.0,+2.0,101) ;$
$[X, Y$] $=$ meshgrid $(X, Y) ; \quad \leftarrow$ this makes X and Y "tables". This is new.
$Z=\operatorname{bumps}(X, Y)$; $\quad \leftarrow$ " Z " will contain a "table" of Z values.
$\operatorname{surf}(X, Y, Z$, 'Edgecolor', 'None'); \leftarrow Make a plot.
title ('The BUMPS function', 'Fontsize', 16):
xlabel (' $<-$ - X -->');
ylabel ('<-- Y -->');
zlabel (' $<--\mathrm{Z}$-->');
print ('-djpeg', 'bumps.jpg');

Insight Through

bumps.jpg, a plot made from "tables"

The BUMPS function

Insight Through

A few notes about functions

Now that we've been introduced to functions, it will be helpful to look at a few details and extra features that may come up from time to time.

Supply the right number of inputs!

function total $=\operatorname{addem}(a, b, c)$
total $=a+b+c$; return
end
total $=$ addem (1, 2, 3)
total $=$ addem ($1,2,3,4$)
total $=\operatorname{addem}(1,2)$
total = addem ()
total $=$ addem

The function must set all outputs!

```
function [big, small ] \(=\operatorname{maxmin}(a, b)\)
    if \((a<b)\)
        big \(=b\);
        small \(=a\);
    else
        big =a;
        little = b; <- Oops! Meant to say "small = ..."
    end
    return
end
```

This function will FAIL, but only in cases where $a>=b$!

Insight Through

You can RETURN early

```
function [ \(m, e\) ] = scientific ( \(x\) )
    \(m=x\);
    \(e=0\);
    if \((1<=x \& \& x<10)\)
    return
    end
    while ( \(m<1\) )
    \(m=m * 10 ;\)
    \(e=e-1\);
    end
    while ( \(10<=m\) )
    \(m=m / 10 ;\)
    \(e=e+1\);
    end
    return
end
```

Insight Through

Use ERROR() for Warnings

function ratio $=\operatorname{dividem}(a, b)$
if $(b=0)$
error (' A / B undefined when $B=0!$ ')
end
ratio $=a / b ;$
return
end

Insight Through

A "PlotShape" function

If a triangle is described by xlist and ylist, we know that the command fill (xlist, ylist, 'r');
draws a triangle filled with red; but if we want the outline, we have to repeat the first point: plot ([xlist, xlist(1)], [ylist, ylist(1)], 'r-');
Also, if we want to specify rgb color, we have to use a more complicated plot command.
And we usually draw a thicker line than the default. Why don't we just write a function that looks like plot(), but takes care of these details for us?

plotshape.m

function plotshape (x list, ylist, color)
\% plotshape will draw the polygon defined by xlist, ylist.
\%
\% color can be 'r', 'g', 'b', 'c', 'm', 'y', 'w', 'k'
$\%$ or it can be an RGB triple like [1.0, 0.4, 0.0].
\%
plot ([xlist, xlist(1)], [ylist, ylist(1)], 'Color' , ... color, 'LineWidth', 3);
return
end

Some Triangle Functions

This week's homework will be all about triangles. One question asks you to compute the perimeter, which involves summing the lengths of the sides:

```
perim = distance ( vertex 1 to vertex 2)
    + distance (vertex 2 to vertex 3)
    + distance ( vertex 3 to vertex 1)
```

Here "distance()" is NOT a MATLAB function, but just represents the fact that we need to compute that distance.

This almost looks like a perfect FOR loop:

```
perim = 0.0;
for i=1:3
    perim = perim + distance ( vertex i to vertex i+1)
end
```

but this "breaks" on the last step!

Insight Through

A simple fix

perim $=0.0$;
for $i=1: 3$
if ($i==1$)
vertex_old = vertex(3);
else
vertex_old = vertex(i-1);
end
perim = perim + distance (vertex(i) - vertex_old); end

Fix with extra variable

perim $=0.0$;
im1 = 3;
for $i=1: 3$
perim $=$ perim + distance (vertex(i) - vertex(im1)); $i m 1=i$;
end

So im1 is $3,1,2$, in loops 1,2 , and 3 .

Insight Through

A clever fix

perim $=0.0$;

for $\mathrm{i}=1: 3$
perim $=$ perim + distance $($ vertex $(i)-\ldots$ vertex $(\bmod (i+1,3)+1)$;
end
because $\bmod (i+1,3)+1=3,1,2$ for $i=1,2,3$.

Insight Through

Advantages to a FOR loop

We could have compute the perimeter by simply writing out the three terms of the sum.
The advantage of figuring out a way to use a FOR loop for that kind of computation is that you can easily adapt the computation to handle a square (4 sides), and you can see how to generalize it to handle a polygon with n sides.

A "wrap around" function

In the triangle perimeter case, we saw that while the first vertex was counting $1,2,3$, the second vertex was going $2,3,1$. That is, once we reached the maximum value of 3 , the next value "wrapped around" to 1.
We tried three different ways to deal with this issue, with an IF statement, or an extra variable, or a MOD function.
What if we wrote a "wrap around" function that said, "I am counting between 1 and n, but if I say $n+1$, I must really mean 1."

wrap.m

function $i=$ wrap (i, ilo, ihi $)$
\%
\% WRAP uses "wrap-around" counting.
\%
$n=$ ihi +1 - ilo; $\quad \leftarrow$ How many values?
$i=$ ilo $+\bmod (i-i l o, n) ; \leftarrow$ Where does I belong?
return
end

Insight Through

Wrap Demo

$\operatorname{wrap}(-2,3,6)=6$
$\operatorname{wrap}(-1,3,6)=3$
$\operatorname{wrap}(0,3,6)=4$
$\operatorname{wrap}(1,3,6)=5$
$\operatorname{wrap}(2,3,6)=6$
$\operatorname{wrap}(3,3,6)=3$
$\operatorname{wrap}(4,3,6)=4$
$\operatorname{wrap}(5,3,6)=5$
$\operatorname{wrap}(6,3,6)=6$
$\operatorname{wrap}(7,3,6)=3$

Insight Through

Version 4

perim $=0.0$;
for $\mathrm{i}=1: 3$
perim $=$ perim $+\operatorname{distance}(x(i), y(i)$ to $x(\operatorname{wrap}(i+1)), y(\operatorname{wrap}(i+1)))$;
end
$\operatorname{wrap}(i+1)=2,3,1$ as $i=1,2,3$.

We will find wrap.m useful for some other problems we will work on.

Insight Through

Generalize to Polygon

```
function perim \(=\) polygon_perimeter ( xlist, ylist )
    \(n=\) length ( xlist ) :
    perim \(=0.0\);
    \(\mathrm{im} 1=\mathrm{n}\);
    for \(i=1: n\)
        perim \(=\) perim \(+\operatorname{distance}((\) xlist(i), ylist(i)) to (xlist(im1),ylist(im1) ))
        \(i m 1=i\);
    end
    return
end
```

Insight Through

The "Gap N" Game

Keep tossing a fair coin until

$$
\mid \text { Heads - Tails | }==\mathrm{N}
$$

Score $=$ total number of tosses

Write a function $\operatorname{Gap}(N)$ that returns the score. Estimate the average score given N.

The Packaging...

function nTosses $=\operatorname{Gap}(\mathrm{N})$

Heads $=0 ;$ Tails $=0 ;$ nTosses $=0$;
while (abs (Heads-Tails) < N)
nTosses $=$ nTosses +1 ;
if (rand() < 0.5)
Heads $=$ Heads +1 ;
else

$$
\text { Tails = Tails }+1 ;
$$

end
end

Insight Through

The Header...

function nTosses $=$ Gap(N)

output parameter list

input
parameter
list

The Body

```
Heads = 0; Tails = 0; nTosses = 0;
while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand ( ) < 0.5 )
                            Heads = Heads + 1;
else
    Tails = Tails + 1;
end
end
```

The necessary output value is computed.

Local Variables

Heads $=0 ;$ Tails $=0 ;$ nTosses $=0$; while (abs (Heads-Tails) < N) nTosses $=$ nTosses +1 ;
 if (rand () < 0.5)
 Heads $=$ Heads +1 ;
 else
 Tails = Tails + 1;
 end
 end

A Helpful Style

Heads $=0 ;$ Tails $=0 ; \mathrm{n}=0$; while (abs (Heads-Tails) < N)

$$
\mathrm{n}=\mathrm{n}+1 ;
$$

if (rand () < 0.5)
Heads $=$ Heads +1 ;
else
Tails = Tails + 1;
end
end
nTosses $=\mathrm{n}$;
Explicitly assign output value at the end. Insight Through

The Specification...

function nTosses $=$ Gap (N)

\% Simulates a game where you \% keep tossing a fair coin \% until |Heads - Tails| == N. $\% \mathrm{~N}$ is a positive integer and \% nTosses is the number of \% tosses needed.

Insight Through

Compute an Expected Value

The gap() function puts the computation into a neat package. Now we can easily refer to that computation by name. Let's use it to estimate the average value of the score (number of tosses) for a given value of N (the gap size).

Strategy:

Play "Gap N" a large number of times, say "M".

Add each score to "total".

After M games, compute total/ M to get a typical score for this value of N .

Solution...

N = input('Enter N:') A very M = 10000;
 $$
s=0 ;
$$
 $$
\text { for } k=1: M
$$
 $$
s=s+\operatorname{Gap}(N) ;
$$
 end
 common methodology for the estimation of expected
 $$
\text { ave }=s / M \text {; }
$$ value.

Sample Outputs

$\mathrm{N}=10$ Expected Value $=98.67$

N = 20 Expected Value $=395.64$

$\mathrm{N}=30$ Expected Value $=889.11$

Solution...

```
N = input('Enter N:');
M = 10000;
s = 0;
for k=1:M
    s = s + Gap(N);
end
ave = s/M;
```

Program development is made easier by having a function that handles a single game.

What if the Game Was Not " Packaged"?

s = 0;

for $\mathrm{k}=1$: M

score $=\operatorname{Gap}(\mathrm{N})$

s = s + score;
end
ave $=s / M$;

Insight Through
$\mathrm{s}=0$;
for $k=1: M$

```
Heads = 0; Tails = 0; nTosses = 0;
while ( abs(Heads-Tails) < N )
    nTosses = nTosses + 1;
    if ( rand() < 0.5 )
    Heads = Heads + 1;
    else
                        Tails = Tails + 1;
    end
end
score = nTosses;
```

$s=s+s c o r e ;$
end

$$
\text { ave }=s / \mathbf{M}
$$

A more
cumbersome implementation

Is there a Pattern?

$\mathrm{N}=10$ Expected Value $=98.67$
$\mathrm{N}=20$ Expected Value $=395.64$
$\mathrm{N}=30$ Expected Value $=889.11$

Insight Through

Compute MANY Expected Values

We computed the expected value of $\operatorname{Gap}(N)$ for one value of N .

We would expect that the score (number of tosses), would increase as we increased N (the gap between Heads and Tails).

The interesting question is how this expected value increases with N .

We can estimate the expected value of $\operatorname{Gap}(N)$ for a range of N -values, say, $\mathrm{N}=1: 30$

Pseudocode

for $\mathrm{N}=1: 30$

Estimate expected value of $\operatorname{Gap}(N)$
Display the estimate.

end

Insight Through

Pseudocode

for $N=1: 30$

Estimate expected value of Gap(N)

Display the estimate.
end

Refine this!

Done that..

$\mathrm{M}=10000$;
 s = 0;
 for $k=1: M$

$$
s=s+\operatorname{Gap}(N) ;
$$

end
ave $=s / M$;

Sol'n Involves a Nested Loop

for $\mathrm{N}=1: 30$
\% Estimate the expected value of Gap(N)

$$
\begin{aligned}
& s=0 ; \\
& \text { for } k=1: M \\
& \quad s=s+\operatorname{Gap}(N) ; \\
& \text { end }
\end{aligned}
$$

ave $=\mathrm{s} / \mathrm{M}$;
fprintf('\%3d \%16.3f',N,ave)
end

Sol'n Involves a Nested Loop

for $\mathrm{N}=1: 30$
\% Estimate the expected value of Gap(N)

$$
\begin{aligned}
& s=0 ; \\
& \text { for } k=1: M \\
& \quad s=s+\operatorname{Gap}(N) ;
\end{aligned}
$$

end

$$
\text { ave }=s / M
$$

disp(sprintf('\%3d \%16.3f',N,ave))
end
But during derivation, we never had to reason about more than one lood

Output

N	Expected Value of Gap (N)	
-	1.000	
1	4.009	Looks like N^{2}.
2	8.985	Maybe
3	16.094	increase M to 4
		solidify
28	775.710	conjecture.
29	838.537	
30	885.672	

Insight Through

Random Quadratics

Generate a random quadratic

$$
q(x)=a x^{2}+b x+c
$$

If it has two real roots, then plot $q(x)$ and highlight the roots.

Sample Output

Insight Through

Uniform Random Numbers

rand() gives us a random value in $[0,1]$, and picks values "uniformly". Here is a histogram of a selection of 1000 such values.

Insight Through

Normal Random Numbers

randn() gives random values in ($-\infty,+\infty$), with average value 0 , and a strong tendency to be close to 0. Negative values are as likely as positive ones.

Set random coefficients

function $[a, b, c]=$ quadratic_random()
\% To make our random coefficients more \% interesting, we generate them with randn().
a $=$ randn();
b = randn();
c = randn();
return
end

Insight Through

Input \& Output Parameters

function $[a, b, c]=$ quadratic_random()

A function
can have more than one output parameter.

Syntax: $[\mathrm{v} 1, \mathrm{v} 2, \ldots$. Insight Through

A function
can have
no input parameters.

Syntax: Nothing

Computing the Roots

```
function r = quadratic_roots_real ( a, b, c )
```

```
\(d=b^{\wedge} 2-4.0\) * \(a\) * \(c\)
if ( d < 0.0 )
        r = [];
    elseif ( d == 0.0 )
        \(r=-b /(2.0\) * \(a) ;\)
    else
        \(r=\left[\begin{array}{l}(-b+s q r t(d)) /(2.0 * a), \ldots \\ (-b-s q r t(d)) /(2.0 * a)] ;\end{array}\right.\)
```

 end
 return
 end

Insight Through

Script Pseudocode

for $k=1: 10$
Generate a random quadratic;
Compute its real roots;
If there are two real roots:
plot the quadratic and roots.
end

Script Pseudocode

for $k=1: 10$
Generate a random quadratic;
Compute its real roots;
If there are two real roots:
plot the quadratic and roots.
end
[a,b,c] = quadratic_random();

Script Pseudocode

for $k=1: 10$
[a,b,c] = quadratic random();
Compute its real roots;
If there are two real roots:
plot the quadratic and roots.
end

$$
r=\text { quadratic_roots_real }(a, b, c) ;
$$

Script Pseudocode

for $k=1: 10$
[a,b,c] = quadratic_random(); $r=$ quadratic_roots_real (a,b,c); If two real roots:
plot the quadratic and roots.
end
$\mathrm{n}=$ length (r$)$; if ($\mathrm{n}=\mathrm{=} 2$) Insight Through

Script Pseudocode

for $k=1: 10$
[a,b,c] = quadratic_random(); r = quadratic_roots_real (a,b,c);
$\mathrm{n}=$ length (r);
if ($\mathrm{n}=\mathrm{=} 2$) plot the quadratic and roots. end
end

Plot the Quadratic and Roots

$r_{\text {_min }}=\min (x) ;$
$r_{\text {max }}=\max (r)$;
$\mathrm{x}=$ linspace (r_min-1, r_max+1, 100) ;
$\mathrm{y}=$ quadratic_evaluate ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}$) ;
plot(x,y, ...
x,0*y,':k', ...
r_min,0,'or', ...
r_max, 0 , or')

Plot the Quadratic and Roots

```
\(r \min =\min (r) ;\)
\(r \max =\max (r)\);
```

$\mathbf{x}=$ linspace (r _min-1, r _max $+1,100$);
$y=$ quadratic_evaluate (a, b, c, x) ;
 ')

This determines a nice range of x-values.
Insight Through

Plot the Quadratic and Roots

```
\(r \min =\min (r) ;\)
\(r \max =\max (r)\);
```

$\mathbf{x}=$ linspace (r _min-1, r _max $+1,100$);
$y=$ quadratic_evaluate (a, b, c, x) ;
plot(x,y,x,0*Y,':K'r_min,0, or',r_max, 0 , 'or ')

Get the y-values.

Evaluate a quadratic polynomial

function $y=$ quadratic_evaluate (a, b, c, x)
\%\% QUADRATIC_EVALUATE evaluates a quadratic polynomial.
\%
$\% A, B, C$ are the coefficients of the polynomial.
\%
\% X is the number, list, or table of evaluation points.
\%
$\% \mathrm{Y}$ is the number, list or table of values.
\%

$$
y=a^{*} x .^{\wedge} 2+b^{*} x+c
$$

return
end

Insight Through

Plot the Quadratic and Roots

r _min $=\min (r) ;$
r _max $=\max (r) ;$
$\mathbf{x}=$ linspace (r_min-1,r_max+1,100);
$y=$ quadratic_evaluate (a, b, c, x) ;
 ')

Graphs the quadratic.
Insight Through

Plot the Quadratic and Roots

r _min $=\min (r) ;$
r max $=\max (r) ;$
$\mathbf{x}=$ linspace (r _min-1,r_max+1,100);
$y=$ quadratic_evaluate (a, b, c, x) ;
 ')

A black, dashed line x-axis.

Insight Through

Plot the Quadratic and Roots

r _min $=\min (r) ;$
r _max $=\max (r) ;$
$\mathbf{x}=$ linspace (r_min-1,r_max+1,100);
$y=$ quadratic_evaluate ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}$) ;
 ')

Highlight root r_min with red circle.

Plot the Quadratic and Roots

r min $=\min (r) ;$
r max $=\max (r) ;$
$\mathbf{x}=$ linspace (r_min-1,r_max+1,100);
$y=$ quadratic_evaluate ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}$) ;
 ')

Highlight root r_max with red circle.

Insight Through

Complete Solution with 3 User Functions

for $k=1: 10$

```
    [a,b,c] = quadratic_random();
    r = quadratic_roots_real ( a, b, c );
    n = length ( r );
    if ( n == 2 )
        r_min = min(r); r_max = max(r);
        x = linspace(r_min-1,r_max+1,100);
        y = quadratic_evaluate ( a, b, c, x );
        plot(x,y,x,0*y,':k',r_min,0,'or',r_max,0,'or')
        shg <- Bring graphics window to front!
        pause(2) <-Wait a few seconds.
    end
```

end
Insight Through

Homework \#6 Due October 20th

hw038: write a function which computes the perimeter of a triangle. (The 'wrap. m ' function file might help you.)
hw039: write a function which shrinks a triangle.
hw040: write a function which computes the area of a quadrilateral, using a function for the area of a triangle.
(Homework \#5 is due tomorrow midnight!)

