
Insight Through
Computing

Intro Math Problem Solving
September 21

Factorials
Stepping Stone Sequences
N-Choose-K
Pascal’s Triangle
Homework #3
Exam next Thursday

Insight Through
Computing

Exercise

Refer to the triangle on the next page.
1) What is the next row?
2) How does this triangle tell you how to write out (x+y)^4?
3) In 4 coin tosses, how many ways can I get 2 Heads, 2 Tails?
4) What is the probability of 2 Heads, and 2 Tails, in 4 coin

tosses?
5) How many ways can I choose 5 things from a set of 7?
6) Is there a formula for the number in row N, column K?
7) Is there a way to write out the N-th row of this triangle,

without any other information?
8) If a 256 steel balls drop down through a pyramid of nails

involving 9 rows, what pattern are they likely to form?

Insight Through
Computing

Pascal’s Triangle

Insight Through
Computing

Recall “Formula” Sequences

We think of a formula sequence as a list of
numbers, whose typical element is a(i). Given
nothing but the value of I, we have a formula
that lets us write the value of a(i) immediately.

Examples:
 Powers of 2: a(i) = 2^i
 Triangular: a(i) = i*(i+1)/2
 Interest: a(i)=original*(1+rate)^i
 Factorial: a(i)=1*2*3*...*i

Insight Through
Computing

Sequences as Stepping Stones

Sometimes, however, a formula is not the best
way to describe a sequence.

Instead, we are given a rule that tells us how
to determine the next element a(i) based on
one or more previous values.

This is sometimes called a recurrence formula,
or recursion, but it’s more memorable to
think of it in terms of stepping stones.

(A similar idea in mathematical induction.)

Insight Through
Computing

Math Moment: Factorials

Let’s recall the factorial function, written
 n! = 1*2*3*...*n
Interesting facts:
 It shows up in Taylor series, as in:
 e(x)=1+x+x^2/2!+x^3/3!+…
 It counts permutations, orderings of n objects;
 It counts subsets size k of a n-set:
 n-choose-k = n!/(k! * (n-k)!)
 MATLAB command: value = factorial (n);
 In MATLAB, 21! is the last value to be computed exactly.
 It’s related to the Gamma function.

Insight Through
Computing

The Factorial Example

We know the factorial can be described by a formula:
 a(i)=i!=1*2*...*i

Instead, we could give the first value:
 a(0) = 1
and then say how to get the next value:
 a(i) = a(i-1) * i

This “stepping stone” description requires us to start
at the first value and take a sequence of steps to
reach the desired value.

Insight Through
Computing

Same Sequence, Different Rule

By formula, we compute 5! this way:
 a(5) = 5! = 5*4*3*2*1 = 120.
By stepping stone, we compute:
 a(0) = 1
 a(1) = a(0) * 1 = 1
 a(2) = a(1) * 2 = 2
 a(3) = a(2) * 3 = 6
 a(4) = a(3) * 4 = 24
 a(5) = a(4) * 5 = 120

Insight Through
Computing

Stepping Stone Advantages?

The stepping stone rule seems to require
more multiplication to get 5!, but in this
case, it’s exactly the same work.

And if we actually wanted to compute a list
a(0) through a(5), the stepping stone
method uses a total of 5 multiplications,
while formulas would use 15.

Stepping stone seems to require setting up all
those intermediate variables, but we’ll fix
that.

Insight Through
Computing

How NOT to Compute 5! in MATLAB
a0 = 1;
a1 = a0 * 1;
a2 = a1 * 2;
a3 = a2 * 3;
a4 = a3 * 4;
a5 = a4 * 5;
fprintf (‘ 5! = %d\n’, a5);

Too much work defining variables. And if we pick a different
factorial to compute, we have to write a new program.

Since we are repeating commands, we want to use a FOR or
WHILE statement, wrapped around just a few commands.

Insight Through
Computing

A Strategy

To compute 5! requires 5 steps.
On step I, the new value is computed by

multiplying the old value by I.
We can use a FOR loop, I = 1 : 5 or, in

general, I = 1 : N.
Depending on what we need to remember,

we can use ONE variable or TWO.

Insight Through
Computing

Two Variable Stepping Stone Program

Strategy: A is the “new” value, and AOLD is
the previous one. On each step, we copy
A into AOLD and compute the next one.

a = 1;
for i = 1 : n
 aold = a;
 a = aold * i;
end

Insight Through
Computing

One Variable Stepping Stone Program

Strategy: Just update A immediately.

a = 1;
for i = 1 : n
 a = a * i;
end

Notice that we lose the ability to measure how big our
step was. If the sequence is suppose to converge, we
would want to compare successive elements, and this
would not be easy in the One Variable program.

Insight Through
Computing

Bring First Value Inside Loop

It might be better to rewrite the loop so
that the starting value is also set inside
the loop. It’s a little cleaner. It
corresponds better to how the rule is
defined. And, if we want to print each
value, we only need one print statement,
not two (because the first value is no
longer outside the loop).

Insight Through
Computing

Revised One Variable Stepping Stone

The loop limits are 0:n, which explains the range of the sequence.
Inside the loop, we have a nice presentation of the stepping stone rule.

for i = 0 : n

 if (i == 0)
 a = 1
 else
 a = a * i;
 end

 fprintf (‘ %d’, a);
end
fprintf (‘\n’);

Insight Through
Computing

factorial_formula.m

% factorial_formula.m
% Show how to compute a sequence of factorials, using a formula.
%
nmax = input ('Enter NMAX, highest factorial to compute: ');

for n = 0 : nmax

 fact = 1;
 for i = 1 : n
 fact = fact * i;
 end

 fprintf (' %d', fact);

end

fprintf ('\n');

Insight Through
Computing

factorial_stepping.m

% factorial_stepping.m
% Show how to compute a sequence of factorials, using stepping stones.
%
nmax = input ('Enter NMAX, highest factorial to compute: ');

for n = 0 : nmax

 if (n == 0) First step is special←
 fact = 1;
 else After that, use the “stepping stone” rule←

 fact = fact * n;
 end

 fprintf (' %d', fact);

end

fprintf ('\n');

Insight Through
Computing

factorial_stepping2.m

% Show how to compute a sequence of factorials, using stepping stones,
% and keeping the previous value.
%
nmax = input ('Enter NMAX, highest factorial to compute: ');

for n = 0 : nmax

 if (n == 0)
 factold = 0; Just make up a “previous” value on first step;←
 fact = 1;
 else
 factold = fact; Save the previous value, perhaps for comparison.←
 fact = factold * n;
 end

 fprintf (' %d', fact);

end

fprintf ('\n');

Insight Through
Computing

Stepping Stones in Computing

Stepping Stone sequences are common in
computing.

In most examples we will see, to compute a(n)
only requires knowing one old value, a(n-1),
although there is at least one famous exception
we will talk about soon.

Describing a sequence using stepping stones takes
us near the computational solution of
differential equations, simulating the behavior
of a quantity like temperature by computing a
sequence of values.

Insight Through
Computing

Stepping Stone Examples

FACT: a(0) is 1, and a(i) = a(i-1) * i;
TRI: a(0) is 0, and a(i) =a(i-1) + i;
EVEN: a(0) is 0, and a(i) = a(i-1) + 2;
POW2: a(0) is 1, and a(i) = a(i-1) * 2;
8CHOOSEI: a(0) is 1, and a(i) = a(i-1) * (8-i) / i;
NCHOOSE2: a(0) is 1, and a(i) = a(i-1)+i;
INT: a(0) is PRINCIPAL and a(i)=(1+RATE)*a(i-1);

Can we work out these sequences?

Insight Through
Computing

New Rule, Old Tasks

If we are using a stepping stone rule for
a sequence, let’s make sure we can still:

* Print the first N entries;
* Plot the first N entries;
* Compute entries UNTIL some condition;
* Compute the MAX;

Insight Through
Computing

Print a Stepping Stone Sequence
interest_sequence.m

rate = input (‘Enter the interest rate: ‘);
year_end = input (‘Enter the final year: ‘);

for year = 2017 : year_end
 if (year == 2017)
 amount = 1000.0; initialize inside loop←

 else
 amount = amount * (1.0 + rate); stepping stone rule←

 end
 fprintf (‘%d %.0f\n’, year, amount);
end

Insight Through
Computing

Plot a Stepping Stone Sequence
interest_plot.m

rate = input (‘Enter the interest rate: ‘);
year_end = input (‘Enter the final year: ‘);

amount_list = []; initialize empty list←
for year = 2017 : year_end
 if (year == 2017)
 amount = 1000.0; initialize inside loop←
 else
 amount = amount * (1.0 + rate); stepping stone rule←
 end
 fprintf (‘%d %.0f\n’, year, amount);
 amount_list = [amount_list, amount]; update list←
end

plot (2017:year_end, amount_list); list of years, list of amounts←

Insight Through
Computing

Run Stepping Stone Sequence UNTIL
interest_until.m

rate = input (‘Enter the interest rate: ‘);
year = 2017;;

while (true)

 if (year = 2017)
 amount = 1000.0;
 else
 amount = amount * (1.0 + rate); stepping stone rule←
 end

 if (5000 <= amount)
 break
 end

 year = year + 1;

end

fprintf (‘In %d, $%0.f exceeds $5000\n’, year, amount);

Insight Through
Computing

Computing the MAX

So far, almost all our sequences consist of
numbers that grow larger and larger, so that
the last number computed is the largest.

This is not always the case; a sequence might
oscillate up and down, and in that case, we might
be interested in knowing the maximum value
observed.

Remember, although we have computed N entries,
we only see one or two values at a time, so when
we are done, it’s too late to say “Just compute
the max now!”

Insight Through
Computing

The MAX of a Stepping Stone Sequence

for k = 0 : n

 if (k == 0)
 value = initial value;
 value_max = value;
 else
 value = STEPPING STONE FORMULA
 value_max = max (value_max, value);
 end

end

fprintf (‘Maximum value observed = %d\n’, value_max);

Insight Through
Computing

Maximum of Stepping Stone Sequence
nchoosek_max.m

n = input (‘Enter the value of N: ‘);

for k = 0 : n

 if (k == 0)
 value = 1;
 value_max = value;
 else
 value = value * (n + 1 – k) / k;
 value_max = max (value_max, value);
 end

end

fprintf (‘Maximum value observed = %d\n’, value_max);

Insight Through
Computing

Mathematics Moment: N-Choose-K

N-Choose-K is how mathematicians describe the number
of ways of choosing K distinct objects from a set of N.

MATLAB includes the command:
 value = nchoosek (n, k);
N-Choose-K is only nonzero for 0 <= K <= N, so this set

of numbers forms a sort of finite sequence.
Choosing 2 things from a set of 10 is the same as

choosing 8 things, because you are really splitting the
set into two pieces: chosen and unchosen.

This means the N-Choose-K sequence is symmetric.
By convention, N-Choose-K is 1 if K is 0.

Insight Through
Computing

N-Choose-K

The formula for N-Choose-K:
 N-Choose-K = n! / (k! * (n-k)!)
assuming 0 <= K <= N, 0 otherwise.

4Choose2 = 4!/(2! * 2!) = 24/ (2 * 2) = 6
5Choose3 = 5!/(3! * 2!) = 120/(6 * 2) = 10
6Choose0 = 6!/(0! * 6!) = 720/(1*720) = 1

Insight Through
Computing

N-Choose-K for N = 4

Computing the values of N-Choose-K when N = 4:

N-Choose-0 = 1
N-Choose-1 = 4
N-Choose-2 = 6
N-Choose-3 = 4
N-Choose-4 = 1

Or, as a single line: 1, 4, 6, 4, 1

Insight Through
Computing

Formula for N-Choose-K

Compare 1, 4, 6, 4, 1 to the formula:
 N-Choose-K = n!/(k! * (n-k)!)
for N = 4, K = 0, 1, 2, 3, 4.

Can we verify these values?

When N = 5, can we compute the values
of N-Choose-K for K = 0, 1, 2, 3, 4, 5?

Insight Through
Computing

nchoosek_formula.m

n = input ('Enter the value of N: ');
k = input ('Enter the value of K: ');

value = factorial (n) / …
 (factorial (k) * factorial (n – k));

fprintf (' %d-Choose-%d = %d\n', n, k,
value);

Insight Through
Computing

Stepping Stone for N-Choose-K

Can we find a stepping stone rule for N-
Choose-K that explains 1,4,6,4,1?

K=0: the value is 1
K=1: multiply by N (remember, N = 4).
K=2: how does 4 become 6? Try

multiplication: 4 * 3/2 = 6.
K=3: 6 becomes 4? Maybe 6*2/3 = 4;
K=4: 4 becomes 1? Multiply by ¼.

Insight Through
Computing

Looking for Pattern

1
4 = 1 * 4 = 1 * 4/1
6 = 4 * 3/2 = 6 * 3/2
4 = 6 * 2/3 = 6 * 2/3
1 = 4 * 1/ 4 = 4 * 1 /4

Looks like we multiply by 4/1, 3/2, 2/3
1/4

Insight Through
Computing

Does the Pattern Really Work?

Check it out on next line, N = 5:
1, 5, 10, 10, 5, 1

N=5,K=0 1 (starting value)
N=5,K=1: 1 * 5/1 = 5
N=5,K=2: 5 * _/_ = 10
N=5,K=3: _ * _/_ = 10
N=5,K=4: _ * _/_ = 5
N=5,K=5: _ * _/_ = 1

Insight Through
Computing

 N-Choose-K (stepping stone)

To compute N-Choose-K:
 Set value = 1;
 Multiply value by n+1-1 / 1;
 Multiply value by n+1-2 / 2;
 …
 Multiply value by n+1-k / k;

Insight Through
Computing

nchoosek_stepping.m

n = input ('Enter the value of N: ');
k = input ('Enter the value of K: ');

for i = 0 : k

 if (i == 0)
 value = 1;
 else
 value = value * (n + 1 - i) / i;
 end

end

fprintf (' %d-Choose-%d = %d\n', n, k, value);

Insight Through
Computing

Explaining the Steppingstone Pattern

Look at row 6:

1, 6, 15, 20, 15, 6, 1

15 is row N=6, column K=2, and 15 = 6!/(2! * 4!)
20 is row N=6, column K=3 and 20 = 6!/(3! * 3!)

Do you see how the formula for 15 becomes the
formula for 20 if we...divide by 3 and multiply by
4?

Insight Through
Computing

Our Stepping Stone Rule

So an N-Choose-K value can be computed
by a complicated formula, but if we
know A(K-1), the value for K-1, we can
compute A(K) in a very simple way:

 A(K) = A(K-1) * (N+1-K)/K.
That’s the stepping stone rule we’ve been

using, but now we know why it works.

Insight Through
Computing

What Happens as We Vary N?

For any N, we can ask for the value of N-
Choose-K for K = 0, 1, 2, …, N, that is, for
N+1 values.

For each N, we can write these N+1
numbers as a row.

Because the rows get longer with N, they
form a triangle, known as Pascal’s triangle.

Thus, our 1,4,6,4,1 values are row 4 of this
triangle.

Insight Through
Computing

Pascal’s Triangle

Insight Through
Computing

Ways to Compute Pascal’s Triangle

We can compute N-Choose-K, in row N,
column K by:

a) cnk = nchoosek (n, k);
b) cnk = n! / (k! * (n-k)!)
=factorial(n)/(factorial(k)*factorial(n-k));
c) stepping stone formula, starting at 1 and

multiplying by n/1, (n-1)/2, ...(n-k+1)/k.
d) add the two values in the previous row,

just above the slot for N-Choose-K!

Insight Through
Computing

Printing Pascal’s Triangle

Rows and Columns start with index 0. In terms of N-Choose-K, N counts
the row, and K the column:

 K=0 K=1 K=2 K=3 K=4

 N = 0: 0,0
 N = 1: 1,0 1,1
 N = 2: 2,0 2,1 2,2
 N = 3: 3,0 3,1 3,2 3,3
 N = 4: 4,0 4,1 4,2 4,3 4,4

To print this triangle, we must handle rows N = 0 : NMAX, and in row N,
columns K = 0 : N. We’ll need a pair of FOR loops, the outer one picks
the row N, then the inner one runs through the columns indexed by K.

Insight Through
Computing

pascal_triangle.m

nmax = input (‘Enter maximum row to print: ‘);

for n = 0 : nmax
 for k = 0 : n
 if (k == 0)
 value = 1;
 else
 value = value * (n + 1 – k) / k;
 end
 fprintf (‘ %3d’, value);
 end
 fprintf (‘\n’);
end

Insight Through
Computing

Mathematical Fact

The sum of the entries in row N of Pascal’s
triangle is 2N.

Given a sequence that we are computing,
how would we go about computing the sum
of all the entries we have seen so far?

Let’s figure this out by verifying the Math
fact!

Insight Through
Computing

pascal_rowsum.m

n = input (‘Enter row to check: ‘);

sum = 0;

for k = 0 : n

 if (k == 0)
 value = 1;
 else
 value = value * (n + 1 – k) / k;
 end

 sum = sum + value;

end

fprintf (‘Row %d sums to %d, and we expected %d\n, n, sum, 2^n’);

Insight Through
Computing

Pascal and Coin Flipping

Row N of Pascal’s triangle can be interpreted as the
number of ways of getting K heads in N tosses of a
fair coin.

Row 7 tells us there are 7 ways of getting 1 head in 7
tosses, but 35 ways of getting 3 heads. That means 3
heads are 5 times as likely as 1 head, when carrying
out 7 tosses.

MATLAB has a bar() command that can display the
resulting values the values in a row of the matrix,
giving us a sense for how these values vary.

Insight Through
Computing

pascal_rowbar.m

n = input (‘Enter row to plot: ‘);

value_list = [];

for k = 0 : n

 if (k == 0)
 value = 1;
 else
 value = value * (n + 1 – k) / k;
 end

 value_list = [value_list, value];

end

bar (0:n, value_list) we can add grid, title, xlabel, ylabel...←

Insight Through
Computing

Probabilities

Row N of Pascal’s triangle gives us the
number of ways a fair coin, tossed N
times, will result in K heads.

The total number of ways is 2N.
So if we are interested in reporting the

probability of K heads, we just divide all
the entries in row N by 2N.

This time, the Y axis of the bar plot will
represent actual probability.

Insight Through
Computing

Let’s Consider Exercise Questions

1) What is the next row of the triangle?
2) How does this triangle tell you how to write out (x+y)^4?
3) In 4 coin tosses, how many ways can I get 2 Heads, 2 Tails?
4) What is the probability of 2 Heads, and 2 Tails, in 4 coin

tosses?
5) How many ways can I choose 5 things from a set of 7?
6) Is there a formula for the number in row N, column K?
7) Is there a way to write out the N-th row of this triangle,

without any other information?
8) If a 256 steel balls drop down through a pyramid of nails

involving 9 rows, what pattern are they likely to form?

Insight Through
Computing

To Learn More:

Martin Gardner, “The multiple charms of
Pascal’s triangle”, Scientific American,
December, 1966.

“The Galton board”,
https://www.youtube.com/watch?
v=6YDHBFVIvIs

Insight Through
Computing

Homework #3
Due by Midnight, Friday, September 22

 hw012: rewrite a positive number in scientific
notation, using two WHILE statements.

hw027: estimate an infinite alternating

decreasing infinite series, using a WHILE
statement.

hw028: pay your grocery bill at an automatic
checkout, using WHILE.

Insight Through
Computing

Homework #4
Due by Midnight, Friday, October 6

 hw029: approximate the golden ratio by
summing part of an infinite series.

hw030: how long must a penny fall before

it reaches the center of the earth?

hw032: when will a typical child weight
1000 pounds, according to Theron?

Insight Through
Computing

Exam

We will have an in-class exam on
Thursday, September 28th.

The exam counts as 15% of your grade.
It will be a written exam, involving short

answers or short MATLAB scripts.
A practice exam will be available by

Tuesday; I may post a copy in Canvas
before then, in the “files” subdirectory
named 09_28.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

