
Insight Through
Computing

Intro Math Problem Solving
September 14

Questions
A Duel (Exercise)
Circle Approximation
Coin Tossing
Prime Factors
Gambler’s Ruin
Exercise Discussion
Remind: Homework #2

Insight Through
Computing

Questions

Question: What’s with the %d print format?

You should first know that MATLAB prefers to print all numbers using scientific
notation: 1.23456789e+08

The %d prints integers so they look like integers:
i = 123456789;
fprintf (‘i = %d\n’, i); i = 123456789
fprintf (‘i = %e\n’, i); i = 1.234568e+08
fprintf (‘i = %f\n’, i); i = 123456789.000000
fprintf (‘i = %g\n’, i); i = 1.234568e+08

However, if your number is not actually an integer, MATLAB will ignore the %d
and use “%e” instead!

i = 123456789.1;
fprintf (‘i = %d\n’, i); i = 1.2346e+08

Insight Through
Computing

A Duel: Exercise

Persons A and B fight a duel to the death. They alternate turns, with A having
the first shot, then B, and so on until someone is hit.

On any one shot, person A has a 30% chance of hitting B, while B has a 40%
chance of hitting A.

B is a better shot, but A gets the first chance. Can you simulate one instance of
this duel? If you run it 10 times, can you estimate A’s chance of surviving?

We need a WHILE statement to run the duel, but we have two conditions to
check, at different times: did A hit B?; did B hit A?

How do we stop the duel program on time? A BREAK statement is part of the
answer.

Try to program this problem, and we will talk about it later today.

Insight Through
Computing

FOR versus WHILE

To use the FOR statement, we need to specify an
index (such as “I”) and the range of values I will
take. We specify the number of steps we expect
to take, but a BREAK statement allows us to stop
early if some condition is observed.

The WHILE specifies a condition that requires us
to carry out the given steps, then check the
condition again. If we want to count steps, we
have to define our own counter (I=0; I = I+1;);

Insight Through
Computing

A Typical Use of WHILE: sum_100.m

s = 0
k = 0
while (s < 100)
 k = k + 1
 s = s + k
end

fprintf (‘1 through %d sum to %d\n’, k, s);

Insight Through
Computing

Circle Approximation

Insight Through
Computing

Archimedes Approximates Pi

The Greeks knew exact formulas for the area
of polygons, but not a circle. It’s pi r^2, of
course, but what value is pi?

They wanted to be able to find two numbers A
and B, so that they were sure that A <= pi <=
B, an underestimate and an overestimate.

This can be done by drawing polygons inside and
around the circle.

Insight Through
Computing

Estimate Pi to a Given Tolerance

If we increase the number of sides of the
polygons, the approximation gets
better.

We could design a program that allows a
user to specify a desired accuracy.

The program would use polygons with
more and more sides. As A gets bigger
and B gets smaller, we should reach the
accuracy request.

Insight Through
Computing

Eg2_2.m (Van Loan, Chapter 2.2)
delta = input ('Enter the error tolerance:');
nMax = input ('Enter the iteration bound:');
%
% Initialize by approximating the circle with triangles.
%
n = 3; % Number of sides
A_n = (n/2)*sin(2*pi/n); % Area of inside triangle
B_n = n*tan(pi/n); % Area of outside triangle
ErrorBound = B_n - A_n; % Maximum error in PI estimate.
%
% As long as Our estimated error is bigger than the tolerance
% AND Our value of N hasn't reached the maximum allowed
%
while (ErrorBound > delta && n < nMax)
 n = n + 1;
 A_n = (n/2)*sin(2*pi/n);
 B_n = n*tan(pi/n);
 ErrorBound = B_n - A_n;
end
%
% Our iteration has stopped. Report the results.
%
estimate = (A_n + B_n) / 2;
fprintf(' delta = %10.3e\n nStar = %1d\n nMax = %1d\n\n', delta, n, nMax) % How does this print 3 lines?←

fprintf(' rho_nStar = %20.15f\n Pi = %20.15f\n', estimate, pi)

Insight Through
Computing

A Coin Tossing Duel

Barbara tosses three coins. If she gets all three heads, she wins. Otherwise,
Mary takes a turn doing the same thing. The players alternate until one wins.

Model this problem.

When tossing 3 fair coins, the probability of getting 3 heads is 1/8.

 HHH 1 equally likely chance out of 8 possibilities;←
 HHT
 HTH
 HTT
 THH
 THT
 TTH
 TTT

Insight Through
Computing

Outline of the Model

It’s natural to think of the game as a
repetition of rounds.

It’s natural to think of each round in
terms of two turns, Barbara’s and
Mary’s.

The game will end as soon as one player
gets three heads, so it’s natural to want
to make this decision by checking
immediately after each player’s turn.

Insight Through
Computing

An outline of the program

While (???) % What can we put here?←

 Do Barbara’s turn
 If Barbara won, quit % A BREAK←

 Do Mary’s turn
 If Mary won, quit % A BREAK←

end

Insight Through
Computing

The Details

Barbara’s turn involves doing something
that has a 1/8 chance of success.

We could model this by either:
A) choose a random integer between 1 and

8, and “win” if its value is 1;
OR
B) choose a random real in [0,1] and “win” if

it’s no greaer than 1/8.

Insight Through
Computing

Outline #2

while (???) % What can we put here?←

 i = randi ([1, 8])
 if (i == 1)
 disp (‘Barbara wins!’)
 break
 end

 i = randi ([1, 8])
 if (i == 1)
 disp (‘Mary wins!’)
 break
 end

end

Insight Through
Computing

WHILE What?

The WHILE statement lets us play as many rounds
as needed. Ordinarily, we put a condition in the
WHILE statement so we know when to stop.

In this example, stopping is taken care of inside the
WHILE loop.

To take the decision away from the WHILE loop, we
just put the word “true” in the condition box. This
means the WHILE will just do the repeating,
letting us make the termination decision elsewhere.

Insight Through
Computing

Final Program: head_game.m

while (true) % “Do forever”←

 i = randi ([1, 8]);
 if (i == 1)
 disp (‘Barbara wins!’);
 break;
 end

 i = randi ([1, 8]) ;
 if (i == 1)
 disp (‘Mary wins!’);
 break;
 end

end

Insight Through
Computing

Thinking about the In-Class Exercise

“while(true)” is useful in your duel program:

while (true)
 Player A shoots at B
 If A hits B, A wins, break
 Player B shoots at A
 If B hits A, B wins, break
end

Insight Through
Computing

The FACTORS Problem

Given a number N, I want to see it written as a product
of prime factors.

Examples:

 N = 24: 2 * 2 * 2 * 3;
 N = 25: 5 * 5;
 N = 26: 2 * 13;
 N = 27: 3 * 3 * 3;
 N = 28: 2 * 2 * 7;
 N = 29: 29;

Insight Through
Computing

How Would We Do This?

We can look at some numbers and see a factor right away. But to have
it done by MATLAB, we have to do this in an organized fashion.

Where do we look, how do we report our results, and how do we know
when to stop?

We can look for factors starting at 2 (1 is not considered interesting as
a factor!), and we may have to go as high as N (if N is a prime!).

If we find that I is a factor of N, we can print it out immediately.

But what if I is a factor of N more than once?

And how do we know when to stop?

Insight Through
Computing

Divide Factor Out of N

Suppose we find that 2 is a factor of N. A logical thing to
do is replace N by N/2 and look for factors of the
smaller number.

Every time we find a factor, I, replace N by N/I.

As long as the current value of N is greater than 1, we
still haven’t found all the factors.

As soon as N is 1, we are done...in other words, “AS LONG
AS (N is greater than 1)” keep looking! Now we are
thinking in terms of a WHILE statement.

Insight Through
Computing

A Draft of the Algorithm

Get a value of N

AS LONG AS N is greater than 1
 Consider the possible factor I
 If I is a factor of N
 print I
 N = N / I;
 end
end

Insight Through
Computing

How Do We Search for ALL Factors?

If we walk through this slide, it’s clear that we
still have to figure out how to work with I.
First, it makes sense to initialize I to 2,
because that’s the first possible factor.

But after we check 2, we need to check 3, and
so on.

Why would the following code NOT do what we
want? (If N = 12, would it give us 2*2*3?)

Insight Through
Computing

A Bad Second Draft

Get a value of N
I = 2
AS LONG AS N is greater than 1
 for I = 2 : N
 If I is a factor of N
 print I
 N = N / I;
 end
 end
end

There are several things wrong here!

Insight Through
Computing

We Need to Handle Repeated Factors

Even if we fix it up, the “bad second draft”
idea will only report numbers that are factors
of N once.

BUT:
 1) We want each prime factor to appear as

many times as it is used: 24=2*2*2*3;
 2) non-prime factors could appear on the list.

We don’t want to see 4 as a (nonprime) factor
of 24!

Insight Through
Computing

Rethinking

AS LONG AS 2 is a factor of N, we want
to divide it out.

Adding another WHILE statement lets us
repeat this check as many times as
necessary.

Once there are no more 2’s, we want to go
to the next possible factor.

Insight Through
Computing

A Third Draft of the Algorithm

Get a value of N

I = 2
AS LONG AS N is greater than 1

 AS LONG AS N can be divided evenly by I
 print I
 N = N / I;
 End
 I = I + 1 % Time to try the next factor←

end

Insight Through
Computing

Working Program: factors.m
% factors.m
% Find and print the prime factorization of N.
%
n = input (' Enter the value of N > 1 to factorize: ');

if (n < 1)
 error (' N must be greater than 1.')
end

i = 2; % Our first possible factor.

while (1 < n)
 while (mod (n, i) == 0)
 n = n / i;
 fprintf (' %d', i);
 end
 i = i + 1;
end
fprintf ('\n');

Insight Through
Computing

Improvements?

Could your code say something like
 “24 has 4 factors: 2 2 2 3”

Could your code say:
 “24 = 2 * 2 * 2 * 3”

Could your code say:
 “24 = 2^3 * 3”

Could your code say:
 “-24 = -1 * 2 * 2 * 2 * 3”

Insight Through
Computing

In Class Exercise: Player A shoots at B

To model what happens when A shoots at
B, let’s use rand() to get a number x
between 0 and 1.

To model whether A hits B, we want to
say something about x that is true 30%
of the time. One such statement is
that x <= 0.3.

If we decide A hits B, we break.
We do something similar on B’s turn.

Insight Through
Computing

Gambler’s Ruin

Here is a problem that is similar to a duel, but
involves winning or losing cash.

Suppose Haley has $100 and Terry has $80,
and they repeatedly toss a coin. Each head
means Haley wins $10 from Terry, while a tail
means Terry wins $10 from Haley. Play
continues until someone is broke.

Model this game.

Insight Through
Computing

Outline of Gambling Program

Variables h_cash and t_cash track Haley and Terry’s cash.

Our game will involve repetition for an unknown number of steps, so a
while() is what we need.

We could use either version of the WHILE statement to play this
game: while (true) + break, or while (condition).

On each turn, we need to:
* toss a random coin, getting 0=T or 1=H;
* take $10 from the loser’s cash and add it to the winner’s cash.
* decide if we are done.

HOW WOULD WE WRITE A PROGRAM TO MODEL THIS?

Insight Through
Computing

Ruin.m, using while(condition)
h_cash = 100;
t_cash = 80;
flips = 0;

while (10 <= h_cash && 10 <= t_cash)

 flips = flips + 1;
 ht = randi ([0, 1]);

 if (ht == 0)
 t_cash = t_cash + 10;
 h_cash = h_cash – 10;
 else
 h_cash = h_cash + 10;
 t_cash = t_cash – 10;
 end

end

if (h_cash < 10)
 fprintf (‘Terry won after %d flips!\n’, flips);
else
 fprintf (‘Haley won after %d flips!\n, flips’);
end

Insight Through
Computing

Ruin2.m Using a WHILE(TRUE)

We could also model the problem using a
while(true) statement.

Then, if Terry won the toss, Haley loses
$10. We need to check if this takes
Haley’s cash below $10, in which case
she can’t make another bet and the
game is over (using a BREAK statement).

We make a similar check if Haley won the
toss.

Insight Through
Computing

Ruin2.m, Using while(true)
h_cash = 100;
t_cash = 80;
flips = 0;

while (true)

 flips = flips + 1;
 ht = randi ([0, 1]);

 if (ht == 0)
 t_cash = t_cash + 10;
 h_cash = h_cash - 10;
 if (h_cash < 10)
 fprintf ('Terry won after %d flips!\n', flips);
 break;
 end
 else
 h_cash = h_cash + 10;
 t_cash = t_cash - 10;
 if (t_cash < 10)
 fprintf ('Haley won after %d flips!\n', flips);
 break;
 end
 end

end

Insight Through
Computing

Ruin3.m, Gambler’s Ruin

This is an example of what, in probability, is called
“gambler’s ruin”.

There are mathematical formulas that give the
probability for either player to win.

The average number of steps can be determined.
How much advantage does a player with more money

have?
Is a player with $20 twice as likely to win as an

opponent with $10? NO, actually THREE times
more likely. Program “ruin3.m” lets you input
h_cash and t_cash, so you can check this!

Insight Through
Computing

Duel.m, In Class Exercise
a_acc = input ('Enter accuracy between 0 and 1 for A: ');
b_acc = input (' and for B: ');

shots = 0;

while (true)

 shots = shots + 1;
 x = rand ();
 if (x <= a_acc)
 fprintf (' Player A won after %d shots were fired!\n', shots);
 break;
 end

 shots = shots + 1;
 x =rand ();
 if (x <= b_acc)
 fprintf (' Player B won after %d shots were fired!\n', shots);
 break;
 end

end

Insight Through
Computing

In Class Exercise

How would you modify your duel program so
that you could run N = 100 or 1000 duels?

Count the wins by A, the wins by B.

Then estimate:
 Probability A wins = #A wins / N
 Probability B wins = # B wins / N

Insight Through
Computing

Homework #2

hw0091: Using a FOR loop and the RAND
function, estimate the average distance
between two random points in the unit square.

hw016: print greatest common divisor tables
using nested FOR loops.

hw023: Estimate the area under the curve
y=humps(x), for x between 0 and 1;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

