
Insight Through
Computing

Intro Math Problem Solving
September 12

Questions
In-class Exercise
WHILE Loops

Insight Through
Computing

Questions

Question: I typed “n=input(‘Enter child’s age:’)
but MATLAB is confused by the apostrophe.

To use apostrophe or single quote in a string, say it TWICE:
 N = input (‘Enter child’’s age:’)
It looks strange, but will print correctly.

To use a percent sign in a string, say it TWICE.
 fprintf (‘ The interest rate is 4%%’\n’);

See “apostrophe.m”

Insight Through
Computing

In Class Exercise

Work on the following problem during class, and we
will discuss our solutions at the end:

How many steps must I take, in summing up integers
1, 2, 3, 4, 5, …, until I reach a total of 100 or more?

To use a for loop for this problem, we’d have to
guess an upper limit on the number of steps. We
would like a solution that doesn’t have to guess, but
simply carries out the repetition – an indefinite
number of times – until the desired goal is reached.

Insight Through
Computing

Sometimes a FOR Loop Doesn’t Help

• We know a FOR loop allows us to specify
that a set of commands are to be carried
out repeatedly, with an index (such as “i”)
keeping track of which step we are on.

• We made FOR loops more flexible by adding
a BREAK statement, that lets us decide to
terminate the process early if we notice we
have finished early.

• But there are simple, interesting problems
that the FOR loop can’t handle well.

Insight Through
Computing

Paying Debts with a FOR Loop

Suppose I want to play a game that costs $10 a round.
To simulate what’s going to happen, I have to specify

how many games I plan to play.

my_balance = 123.45;
cost = 10.0;
for round = 1 : 8
 my_balance = my_balance – cost;
end
fprintf (‘I still have $%10.2f\n’, my_balance);

Insight Through
Computing

Gambling til you’re broke

• But if I’m gambling, and I plan to play
until I double my money or go broke,
then this is also a case where I want to
repeat some commands many times.

• Instead of saying how many times, I
need to say “until something happens”…
that is, until I go broke or double.

• Let’s sketch a pseudo-MATLAB code.

Insight Through
Computing

Double or Nothing (pseudo-MATLAB)

We will play over and over until we have made our goal
(doubling), or can’t pay for a round. We think of our
program like this:

stake = 123.45;
goal = 2 * stake;
cost = 10.0;
AS LONG AS (cost <= stake AND stake < goal)
 stake = stake – cost; pay←
 stake = stake + 20 * rand (); play←

end

Insight Through
Computing

The WHILE Statement

The WHILE statement works as follows:
• If a condition is true, execute the

statements inside the WHILE loop.
• If the condition is STILL true, execute

the statements again, and again...
• WHILE lets us repeat an indefinite

number of times, but requires us to
control how the loop will terminate.

Insight Through
Computing

double_or_nothing.m (legal MATLAB)

The WHILE statement lets us play indefinitely, until
we make our goal or can’t pay for another round.

stake = 123.45;
goal = 2 * stake;
cost = 10.0;
while (cost <= stake && stake < goal)
 stake = stake – cost; pay←

 stake = stake + 20 * rand (); play←
end

Insight Through
Computing

What’s the base-2 logarithm of X?

Can we find the smallest power of 2 that is
greater than or equal to X? That’s almost the
logarithm base 2 of X (It’s the integer part of
the log, rounded up.) Let’s call it “intlog2(X)”:

 X intlog2(x)
 1 0, because 1 <= 2^0 = 1
 10 4, because 10 <= 2^4 = 16
 100 7, because 100 <= 2^7 = 128
 123456789 27, because 2^27 = 134217728

Insight Through
Computing

How would we compute intlog2(x)?

We seek P, the smallest power of 2 so that P >= X.
We could start with P=1, and set a counter I = 0.
(We don’t know how many steps we will need so we can’t use

a FOR statement.)

“AS LONG AS” our P is smaller than X…
 we need to double: P=P*2
 and increase our counter I,
 and try again.

When we reach a value P >= X, the value of I is our answer.

Insight Through
Computing

Sample Calculation

• X = 56
• I = 0, P = 1 < 56 so try again
• I = 1, P = 2 < 56
• I = 2, P = 4 < 56
• I = 3, P = 8 < 56
• I = 4, P = 16 < 56
• I = 5, P = 32 < 56
• I = 6, P = 64 >= 56, STOP,
• INTLOG2(56) = 6 because 2^5 < 56 <= 2^6

Insight Through
Computing

INTLOG2 (Pseudo-MATLAB)

Input X from user
Initialize counter: I = 0,
Initialize power of 2: P = 1

AS LONG AS (P < X)
 P = P * 2; double P←

 I = I + 1; increase I←

end of statements to repeat

Then INTLOG2(X) is I

Insight Through
Computing

intlog2.m (legal MATLAB)

x = input (‘ Enter value of X: ‘);
i = 0;
p = 1;
while (p < x)
 p = p * 2;
 i = i + 1;
end
fprintf (‘intlog2(%f) = %d\n’, x, i);

Insight Through
Computing

What if X < 1?

If X is less than 1, then we need to look at
negative powers of 2.

So we start at P=1, I=0, and DIVIDE P by 2
and subtract 1 from I, repeatedly,

As soon as P < X, we know 2*P >= X and is
the smallest power to do that.

So INTLOG2(X) is I+1 (the previous I).

Insight Through
Computing

Sample Calculation for X < 1

X = 0.04
• I = 0, P = 1 > 0.4 so try again
• I = -1, P = 1/2 = 0.5 > 0.04
• I = -2, P = ¼ = 0.25 > 0.04
• I = -3, P = 1/8 = 0.125 > 0.04
• I = -4, P = 1/16= 0.0625 > 0.04
• I = -5, P = 1/32 = 0.03125 < 0.04, so STOP
INTLOG2(0.04) = -5+1=-4 (have to back up 1)
Because 2^(-5) < P <= 2^(-4).

Insight Through
Computing

intlog2.m (for ALL positive X)
x = input (‘ Enter value of X: ‘);
i = 0;
p = 1;

if (x < 1)

 while (x <= p)
 p = p / 2;
 i = i - 1;
 end
 i = i + 1; % Back up one level!

else if (1 < x)

 while (p < x)
 p = p * 2;
 i = i + 1;
 end

end

Insight Through
Computing

When will my bank account be $1,000,000

In the sixth episode of “Futurama”, Philip
J Fry discovers that his bank account of
$0.93 in the year 1999 has grown to
$4.3 billion in the 31st century.

A typical bank interest rate is 1.2%.
Each year, my savings multiply by 1.012.
If I have $1 in my account today, how soon

will I have $1,000,000?

Insight Through
Computing

Strategy (pseudo-MATLAB)

Initially, I have $1 and the year is 2017

“AS LONG AS” I have less than $1,000,000
 Go to next year
 Add 1.2% to my current funds
End of statements to repeat

Print the year and amount

Insight Through
Computing

interest.m

amount = 1.00;
year = 2017;
while (amount < 1000000)
 year = year + 1;
 amount = 1.012 * amount;
end
fprintf (‘Year %d, I have $%f\n’, year,

amount);

Insight Through
Computing

Alternating, Decreasing Series

Some mathematical functions can be
defined by an infinite series, an endless
sum of terms:

e^x = 1 + x + x^2/2 + x^3/6 + x^4/24 + …
If successive terms have opposite signs,

the series is said to alternate.
If each term is smaller (in absolute value)

than the previous one, the series is said
to be monotonically decreasing.

Insight Through
Computing

The error of a finite sum

Suppose a mathematical quantity can be
expressed as an alternating, decreasing
series, S = a1 - a2 + a3 – a4 + … - an …

We might estimate the value of S by
adding the first n terms and stopping.

For alternating decreasing series, the
error of such an estimate is no greater
than the size of the next term.

Insight Through
Computing

An alternating decreasing series

S = 1 – 1/2 + 1/3 – 1/4 + 1/5 - …

This series is alternating.
The terms decrease in size.
Its exact value is log(2).
Here are estimates for log(2):
1 = 1 error no more than 1/2
1-1/2 = 1/2, error no more than 1/3
1-1/2+1/3 = 2/3, error no more than 1/4

Insight Through
Computing

Estimate S with given accuracy

Suppose we want to estimate S, with an accuracy of at least 0.00001?
Adding no terms at all, our estimate S = 0, and our error is no more than 1.
Adding term #1, our estimate S = 1, and our error is no more than 1/2
Adding term #2, our estimate S = 1/2, and our error is no more than 1/3.
So a procedure to estimate S with accuracy ACCURACY might be:

Start S at 0, and set A to term #1.

AS LONG AS (ACCURACY < | A |)
 S = S + A.
 A = next term.
end

Print S, the estimated value.
Print A, the estimated error.

Insight Through
Computing

Keeping track of the terms

In our loop, we compute the next term, A
On the N-th step, N is 1/N or -1/N.
One way to remember this is that, if N is odd, A will

be positive, but if N is even, A will be negative.

 if (mod (n,2) == 0)
 a = 1 / n;
 else
 a = -1/n;
 end

Insight Through
Computing

log2_series.m

acc = 0.00001;
s = 0.0;
n = 1;
a = 1 / n;

while (acc < abs (a))

 s = s + a;
 n = n + 1;
 if (mod (n, 2) == 1)
 a = 1 / n;
 else
 a = - 1 / n;
 end

end

fprintf (‘ Estimate for log(2) = %16.10f\n’, s);
fprintf (‘ Estimated error = %16.10e\n’, a);

Insight Through
Computing

In Class Exercise

sum = 0; % our sum;←

i = 0; % number to add;←

while (sum < 100) % Another step?←

 i = i + 1; % increase number←

 sum = sum + i % Add it.←

end
fprintf (‘ Step %d, sum is %d\n’, i, sum);

(We see that after step 14, the sum is 105.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

