
Insight Through
Computing

Intro Math Problem Solving
September 7

Last time: FOR, RAND, RANDI
Estimate area under curve
The BREAK statement
Nested FOR loops
Exercises
Homework!

Insight Through
Computing

Your Questions

Q1: Difference between e, f, and g formats?
What about d format?

A1: Demonstrate with “printing.m”.

Q2: When using random sampling, how do you
know that N=1000 tests is enough?

A2: You don’t! So you try N=100, N=1,000,
N=10,000, N=100,000 hoping answers settle
down. Demonstrate with “stick_split.m”.

Insight Through
Computing

integer_prime.m

itsaprime = true;

for i = 2 : j – 1
 if (mod (j, i) == 0)
 itsaprime = false;
 end
end

Insight Through
Computing

integer_sum.m

s = 0;

for i = 1 : n Consider i=1,2,3,…,n←

 s = s + i;
end
fprintf (‘ Sum is %d\n’, s);

Insight Through
Computing

square_root.m

z = 2017;
x = z;
y = 1;
for i = 1 : 20 Maybe 20 steps is enough?←
 x = (x + y) / 2;
 y = z / x;
end
fprintf (‘ Square root estimate = %g\n’, x);

Insight Through
Computing

area_under_curve_random.m

n = input (' Enter number of sample points: ');
m = 0;
area_square = 1.0;

for i = 1 : n
 x = rand ();
 y = rand ();
 if (y <= x^2)
 m = m + 1;
 end
end

area_curve = (m / n) * area_square;

Insight Through
Computing

Area Under a Curve, Using a Grid

We estimated the area under the curve
by putting a box around the picture and
randomly sampling points in the box.

A more methodical way uses a grid. For
this example, we divide the x-interval
into N equal subintervals, and look at
the area as a collection of `strips’ with
a raggedy top. We approximate each
strip by a rectangle, and sum.

Insight Through
Computing

Approximate Area by Rectangles

Insight Through
Computing

Details of the grid

How could we express this in MATLAB?
To make N subintervals, we need N+1 points, 0=0/n,

1/n, 2/n, …, (n-1)/n, n/n=1.
Because the whole interval is of length 1, each

subinterval is of length dx=1/n.
Interval I goes from x=(i-1)/n to x = i/n.
The “raggedy top” of the I-th strip is the values

y=x^2 for (i-1)/n <= x <= i/n.
We approximate the strip by a rectangle, whose

area is width*height=(1/n)*y, where we have to
pick just one y value from the raggedy top.

Insight Through
Computing

area_under_curve_grid.m

n = input (' Enter the number of intervals to use: ');

area = 0.0;

for i = 1 : n
 x = i / n; This is the RIGHT endpoint of interval i←

 y = x^2; This is the height of the curve at x.←

 area_strip = (1/n) * y;
 area = area + area_strip;
end

fprintf (' Estimated area under y=x^2 is %g\n', area);
fprintf (' Exact area is %g\n', 1 / 3);

Insight Through
Computing

Change the problem

Estimate the area under the curve y = sin(x),
going from 0 to 2 pi.

The interval has changed to [0,2pi], so each
subinterval has width 2pi/n.

The function sin(x) can be negative, and so we
count area below the x-axis as negative.

For this particular problem, the exact answer
is 0, because the positive and negative areas
will cancel out.

Instead of right endpoints, let’s use left ones!

Insight Through
Computing

Left endpoint rectangle approximation

Insight Through
Computing

area_under_sine_grid.m

n = input (' Enter the number of intervals to use: ');

area = 0.0;
width = 2 * pi / n;

for i = 1 : n
 x = 2 * pi * (i – 1) / n; This is the LEFT endpoint of interval i←
 y = sin(x); This is the height of the curve at x.←
 area_strip = width * y;
 area = area + area_strip;
end

fprintf (' Estimated area under y=sin(x) is %g\n', area);
fprintf (' Exact area is %g\n', 0.0);

Insight Through
Computing

Make FOR Loops More Flexible

Using a for loop for square roots, we are
always taking 20 steps. But sometimes we
can tell that after just a few steps, the
answer x is `good enough’.

When we check if a number is prime, we
start by assuming it is. As soon as we find
a single factor, we know it is not a prime.
But we keep on, checking all possible
factors.

Insight Through
Computing

Using the BREAK statement

for i = 1:N

 ...some commands...

...maybe more commands...

end

if (something happens)
 ...maybe print a message

or do something...
 break;
 end

Insight Through
Computing

integer_prime2.m

itsaprime = true;

for i = 2 : j – 1
 if (mod (j, i) == 0)
 itsaprime = false;
 break; no need for further steps! ←
 end
end

Insight Through
Computing

square_root2.m

z = 2017;
x = z;
y = 1;
for i = 1 : 20
 x = (x + y) / 2;
 y = z / x;
 if (abs (z – x^2) < 0.0000001) Close enough?←
 break
 end
end
fprintf (‘ Square root estimate = %g\n’, x);

Insight Through
Computing

BREAK is helpful

The break statement definitely improves
the prime calculation.

For the square root calculation, we still
have to wonder if 20 steps is enough
for hard problems, and why we picked
the value 0.0000001 as a tolerance for
early stopping. (The WHILE statement
will help us with the first issue.)

Insight Through
Computing

A Random Walk (with BREAK)

A person is standing in the dark, in the
exact middle of a 10 foot board.

The person will take 20 steps, each
randomly chosen to be of length -1 (to
the left), 0 (stay), and +1 (to the right).

If the person goes beyond 5 feet, they
FALL OFF.

Simulate this process.

Insight Through
Computing

Planning the Program

A “position” variable, which starts at 0,
will keep track of where the person is.

A for loop will repeat 20 times.
The step size is a random integer

between -1 and +1, so we can use
randi([-1,+1]) to get the steps.

If the person FALLS OFF, then we can
use break to terminate the calculation.

Insight Through
Computing

random_walk.m

falls_off = false;
position = 0;

for step = 1 : 20

 step_size = randi ([-1, +1]);
 position = position + step_size;

 if (position < -5 || +5 < position)
 falls_off = true;
 break;
 end

end

if (falls_off)
 fprintf (' Fell off on step %d\n', step);
else
 fprintf (' Safe at position %d\n', position);
end

Insight Through
Computing

Nested FOR Loops

A for loop lets us do a sequence of items on a list,
with the for loop index telling us which item we’re
working on right now. The index, which might be
“i”, can be thought of as the row of the list we
are working on.

Sometimes, it’s more natural to work with a table,
that is, a collection of items that are stored in
rows and columns. In this case, if we use a pair of
for loops, we can work on each item, always
knowing what row and column we are working on.

It is common to use “i’ for rows and “j” for columns.

Insight Through
Computing

An Example From Last Class

for i = 1 : 5
 for j = 1 : i - 1
 fprintf (‘%d’, j);
 end
 fprintf (‘\n’);
end

(First line is blank)
1
1 2
1 2 3
1 2 3 4

Insight Through
Computing

Printing a Table

for i = 1 : 3
 for j = 1 : 5
 fprintf (‘ %d’, 10*i+j);
 end
 fprintf (‘\n’);
end

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

Insight Through
Computing

Printing Matrix Indices

for i = 1 : 3
 for j = 1 : 5
 fprintf (‘ (%d,%d)’, i, j);
 end
 fprintf (‘\n’);
end

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)

Insight Through
Computing

Print a Matrix

The Hilbert matrix H(i,j) = 1/(i+j-1);
Print rows 1:10 and columns 1:4.

for i = 1 : 10
 for j = 1 : 4
 fprintf (‘ %10.6f’, 1/(i+j-1));
 end
 fprintf (‘\n’);
end

Insight Through
Computing

Hilbert Matrix
>>

 1.000000 0.500000 0.333333 0.250000 0.200000
 0.500000 0.333333 0.250000 0.200000 0.166667
 0.333333 0.250000 0.200000 0.166667 0.142857
 0.250000 0.200000 0.166667 0.142857 0.125000
 0.200000 0.166667 0.142857 0.125000 0.111111
 0.166667 0.142857 0.125000 0.111111 0.100000
 0.142857 0.125000 0.111111 0.100000 0.090909
 0.125000 0.111111 0.100000 0.090909 0.083333
 0.111111 0.100000 0.090909 0.083333 0.076923
 0.100000 0.090909 0.083333 0.076923 0.071429

Insight Through
Computing

Printing Divisors of the number I

The number I is divisible by J if mod(I,J)
is 0. To print the divisors of numbers
between 10 and 20, we need two loops.

The outer loop chooses the value of I.
The inner loop considers all possible

divisors J, 1 <= J <= I.

Insight Through
Computing

Jigsaw Puzzle – Put it together!

end
end
end
for i = 10 : 20
for j = 1 : i
fprintf (‘\n’);
fprintf (‘ %d’, j);
fprintf (‘Divisors of %d’, i);
if (mod (i, j) == 0)

Insight Through
Computing

List Divisors of Numbers from 10 to 20

for i = 10 : 20
 fprintf (‘Divisors of %d’, i);
 for j = 1 : i
 if (mod (i, j) == 0)
 fprintf (‘ %d’, j);
 end
 end
 fprintf (‘\n’);
end

Insight Through
Computing

Divisor Output

Divisors of 10: 1 2 5 10
Divisors of 11: 1 11
Divisors of 12: 1 2 3 4 6 12
Divisors of 13: 1 13
Divisors of 14: 1 2 7 14
Divisors of 15: 1 3 5 15
Divisors of 16: 1 2 4 8 16
Divisors of 17: 1 17
Divisors of 18: 1 2 3 6 9 18
Divisors of 19: 1 19
Divisors of 20: 1 2 4 5 10 20

Insight Through
Computing

Random Sampling Example

To do random sampling, we use a for loop
to carry out the process many times.

In cases like our random walk, the
process itself also involves a for loop.

A program would use nested loops:
 For I = 1 : number of tests
 For j = 1 : 20 (number of steps)

Insight Through
Computing

Is Falling Off Likely?

Running the random walk program, it seems
like falling off the board is harder to do
than we might imagine.

Suppose we wanted to estimate the
probability of falling off? There are
mathematical ways to do this, but even
then, we could use a computation for
comparison or reassurance.

We need to do N experiments, and count M,
the number of times the person falls.

Insight Through
Computing

Need for TWO loops

We have seen other examples of averaging. N
counts the trials, M the successes, and M/N
the estimated probability of a success.

We wrap a FOR loop around the trial in order
to carry out N of them.

Because the random walk already involves a
FOR loop, now we have two loops, one
“nested” inside the other.

Insight Through
Computing

The Outer Loop (J is the index)

Get N from user.
Set m = 0;
for j = 1 : n

 Do the J-th random walk, and increment M
if the person fell.

End
prob = m / n;

Insight Through
Computing

The Inner Loop (STEP is the index)

position = 0;
for step = 1 : 20

 step_size = randi ([-1, +1]);
 position = position + step_size;

 if (position < -5 || +5 < position)
 m = m + 1;
 break;
 end

end

Insight Through
Computing

The Averaging Loop + the Walking Loop

n = input (‘Enter N:’)
m = 0;
for j = 1 : n Average N walks←

 position = 0;
 for step = 1 : 20 Each walk takes up to 20 steps.←

 step_size = randi ([-1, +1]);
 position = position + step_size;

 if (position < -5 || +5 < position) Stop the walk if we have fallen.←
 m = m + 1;
 break;
 end

end

end

prob = m / n;

Insight Through
Computing

The Prime Number Theorem

In the previous class, we talked about the
prime number theorem, which estimates
the number of primes you will find
between 1 and N:

The number of primes between 1 and N
can be estimated as N/log(N).

Insight Through
Computing

We can investigate using a pair of loops
N = 1000 (or get N as input from the user)
M = 0

For every integer I from 1 to N

 ITSAPRIME = true

 For every possible divisor J from 2 to I-1
 If I is divisible by J
 ITSAPRIME = false
 break
 end
 end

 If (ITSAPRIME)
 M = M + 1
 End

end

Print N, M, log(N)/N

Insight Through
Computing

HOMEWORK

Homework #1 is due this Friday midnight.

Homework #2:

hw0091: distance between random points
(nested for loops and rand());
hw016: greatest common divisor table
(nested for loops)
hw023: area under curve y=humps(x)
(use “area under curve grid” ideas).

Insight Through
Computing

New Concepts

Estimating area under a curve using
regular spaced x values;

Break statement;

Nested for loops;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

