Intro Math Problem Solving September 7

Last time: FOR, RAND, RANDI
Estimate area under curve
The BREAK statement
Nested FOR loops
Exercises
Homework!

Your Questions

Q1: Difference between e, f, and g formats? What about d format?
A1: Demonstrate with "printing.m".

Q2: When using random sampling, how do you know that $\mathrm{N}=1000$ tests is enough?
A2: You don't! So you try $N=100, N=1,000$, $N=10,000, N=100,000$ hoping answers settle down. Demonstrate with "stick_split.m".
itsaprime = true;
for $i=2: j-1$
if $(\bmod (j, i)==0)$
itsaprime = false;
end
end

integer_sum.m

$$
s=0
$$

for $i=1: n \quad \leftarrow$ Consider $i=1,2,3, \ldots, n$ $s=s+i ;$ end
fprintf (' Sum is \%d\n', s):

square_root.m

$z=2017 ;$
$x=Z ;$
$y=1 ;$
for $\mathrm{i}=1: 20 \leftarrow$ Maybe 20 steps is enough?
$x=(x+y) / 2 ;$
$y=z / x ;$
end
fprintf (' Square root estimate $=\% g \backslash n^{\prime}, x$);

Insight Through

area_under_curve_random.m

```
\(n=\) input ( ' Enter number of sample points: ' );
\(m=0\);
area_square \(=1.0\);
for \(\mathrm{i}=1: n\)
    \(x=\operatorname{rand}()\);
    \(y=\operatorname{rand}() ;\)
    if \(\left(y<=x^{\wedge} 2\right)\)
        \(m=m+1\);
    end
end
```

area_curve $=(m / n) *$ area_square;

Insight Through

Area Under a Curve, Using a Grid

We estimated the area under the curve by putting a box around the picture and randomly sampling points in the box.
A more methodical way uses a grid. For this example, we divide the x-interval into N equal subintervals, and look at the area as a collection of 'strips' with a raggedy top. We approximate each strip by a rectangle, and sum.

Approximate Area by Rectangles

Insight Through

Details of the grid

How could we express this in MATLAB?
To make N subintervals, we need $N+1$ points, $0=0 / n$, $1 / n, 2 / n, \ldots,(n-1) / n, n / n=1$.
Because the whole interval is of length 1, each subinterval is of length $d x=1 / n$.
Interval I goes from $x=(i-1) / n$ to $x=i / n$.
The "raggedy top" of the I-th strip is the values $y=x^{\wedge} 2$ for $(i-1) / n<=x<=i / n$.
We approximate the strip by a rectangle, whose area is width*height $=(1 / n)^{\star} y$, where we have to pick just one y value from the raggedy top.

area_under_curve_grid.m

$n=$ input (' Enter the number of intervals to use: ');

```
area = 0.0;
for i=1:n
    x= i/n;}\quad\leftarrow\mathrm{ This is the RIGHT endpoint of interval i
    y=x^2;
    area_strip = (1/n)* y;
    area = area + area_strip;
end
```

fprintf (' Estimated area under $y=x^{\wedge} 2$ is $\% g \backslash n '$, area); fprintf (' Exact area is \%g\n', $1 / 3$);

Insight Through

Change the problem

Estimate the area under the curve $y=\sin (x)$, going from 0 to 2 pi.
The interval has changed to [0,2pi], so each subinterval has width $2 \mathrm{pi} / \mathrm{n}$.
The function $\sin (x)$ can be negative, and so we count area below the x-axis as negative.
For this particular problem, the exact answer is 0 , because the positive and negative areas will cancel out.
Instead of right endpoints, let's use left ones!

Left endpoint rectangle approximation

Insight Through

area_under_sine_grid.m

$n=\operatorname{input}($ ' Enter the number of intervals to use: ');

```
area = 0.0;
width = 2 * pi / n;
for i=1:n
    x=2 * pi * (i-1)/n; \leftarrowThis is the LEFT endpoint of interval i
    y=\operatorname{sin}(x);
    area_strip = width * y;
    area = area + area_strip;
end
```

fprintf (' Estimated area under $y=\sin (x)$ is \% $g \backslash n '$, area);
fprintf (' Exact area is \%g\n', 0.0):

Insight Through

Make FOR Loops More Flexible

Using a for loop for square roots, we are always taking 20 steps. But sometimes we can tell that after just a few steps, the answer x is 'good enough'.

When we check if a number is prime, we start by assuming it is. As soon as we find a single factor, we know it is not a prime. But we keep on, checking all possible factors.

Using the BREAK statement

for $i=1: N$
...some commands...
if (something happens) ...maybe print a message or do something... break; end
...maybe more commands... end

integer_prime2.m

itsaprime = true;
for $\mathrm{i}=2: \mathrm{j}-1$
if $(\bmod (j, i)==0)$
itsaprime = false;
break; $\quad \leftarrow$ no need for further steps!
end
end

square_root2.m

$z=2017 ;$
$x=z ;$
$y=1$;
for $\mathrm{i}=1: 20$
$x=(x+y) / 2$;
$y=z / x$;
if $\left(\right.$ abs $\left.\left(z-x^{\wedge} 2\right)<0.0000001\right) \leftarrow$ Close enough? break
end
end
fprintf (' Square root estimate $=\% g \backslash n^{\prime}, x$);

Insight Through

BREAK is helpful

The break statement definitely improves the prime calculation.

For the square root calculation, we still have to wonder if 20 steps is enough for hard problems, and why we picked the value 0.0000001 as a tolerance for early stopping. (The WHILE statement will help us with the first issue.)

A Random Walk (with BREAK)

A person is standing in the dark, in the exact middle of a 10 foot board.
The person will take 20 steps, each randomly chosen to be of length -1 (to the left), 0 (stay), and +1 (to the right).
If the person goes beyond 5 feet, they FALL OFF.
Simulate this process.

Planning the Program

A "position" variable, which starts at 0, will keep track of where the person is.
A for loop will repeat 20 times.
The step size is a random integer between -1 and +1 , so we can use randi $([-1,+1])$ to get the steps.
If the person FALLS OFF, then we can use break to terminate the calculation.

random_walk.m

```
falls_off = false;
position = 0;
for step = 1:20
    step_size = randi ([ -1, +1 ] );
    position = position + step_size;
    if (position<-5 | +5 < position)
    falls_off = true;
    break;
    end
end
if (falls_off)
    fprintf(' Fell off on step %d\n', step );
else
    fprintf (' Safe at position %d\n', position );
end
```

Insight Through

Nested FOR Loops

A for loop lets us do a sequence of items on a list, with the for loop index telling us which item we're working on right now. The index, which might be " i ", can be thought of as the row of the list we are working on.
Sometimes, it's more natural to work with a table, that is, a collection of items that are stored in rows and columns. In this case, if we use a pair of for loops, we can work on each item, always knowing what row and column we are working on.
It is common to use " i ' for rows and " j " for columns.

An Example From Last Class

```
for i=1:5
    for j=1:i-1
        fprintf('%d', j):
    end
    fprintf('\n');
end
(First line is blank)
123
1234
```


Printing a Table

for $\mathrm{i}=1: 3$
for $j=1: 5$
fprintf (' \%d', 10*i+j);
end
fprintf (' $\backslash n^{\prime}$);
end

1112131415
2122232425
3132333435

Insight Through

Printing Matrix Indices

for $\mathrm{i}=1: 3$
for $j=1: 5$
fprintf (' (\%d,\%d)', i, j);
end
fprintf (' $\backslash n$ ');
end
$(1,1)(1,2)(1,3)(1,4)(1,5)$
$(2,1)(2,2)(2,3)(2,4)(2,5)$
$(3,1)(3,2)(3,3)(3,4)(3,5)$

Insight Through

Print a Matrix

The Hilbert matrix $H(i, j)=1 /(i+j-1)$;
Print rows 1:10 and columns 1:4.
for $\mathrm{i}=1: 10$
for $j=1: 4$
fprintf (' \%10.6f', 1/(i+j-1));
end
fprintf (' $\backslash n$ ');
end

Insight Through

Hilbert Matrix

1.000000	0.500000	0.333333	0.250000	0.200000
0.500000	0.333333	0.250000	0.200000	0.166667
0.333333	0.250000	0.200000	0.166667	0.142857
0.250000	0.200000	0.166667	0.142857	0.125000
0.200000	0.166667	0.142857	0.125000	0.111111
0.166667	0.142857	0.125000	0.111111	0.100000
0.142857	0.125000	0.111111	0.100000	0.090909
0.125000	0.111111	0.100000	0.090909	0.083333
0.111111	0.100000	0.090909	0.083333	0.076923
0.100000	0.090909	0.083333	0.076923	0.071429

Insight Through

Printing Divisors of the number I

The number I is divisible by J if $\bmod (I, J)$ is 0 . To print the divisors of numbers between 10 and 20, we need two loops.

The outer loop chooses the value of I. The inner loop considers all possible divisors $\mathrm{J}, 1<=\mathrm{J}<=\mathrm{I}$.

Jigsaw Puzzle - Put it together!

end end
end
for $\mathrm{i}=10: 20$
for $\mathrm{j}=1$: i
fprintf (' $\backslash n^{\prime}$):
fprintf (\quad \%d', j);
fprintf ('Divisors of \%d', i);
if $(\bmod (i, j)==0)$

Insight Through

List Divisors of Numbers from 10 to 20

for $\mathrm{i}=10$: 20
fprintf ('Divisors of \%d', i);
for $\mathrm{j}=1$: i
if $(\bmod (i, j)==0)$
fprintf (\quad \%d', j);
end
end
fprintf ($' \backslash n$ ');
end

Divisor Output

Divisors of 10: 12510
Divisors of 11: 111
Divisors of 12: 1234612
Divisors of 13: 113
Divisors of 14:12714
Divisors of 15: 13515
Divisors of 16: 124816
Divisors of 17: 117
Divisors of 18: 1236918
Divisors of 19: 119
Divisors of 20: 12451020

Random Sampling Example

To do random sampling, we use a for loop to carry out the process many times.
In cases like our random walk, the process itself also involves a for loop.
A program would use nested loops:
For $I=1$: number of tests

$$
\text { For } j=1: 20 \text { (number of steps) }
$$

Is Falling Off Likely?

Running the random walk program, it seems like falling off the board is harder to do than we might imagine.
Suppose we wanted to estimate the probability of falling off? There are mathematical ways to do this, but even then, we could use a computation for comparison or reassurance.
We need to do N experiments, and count M, the number of times the person falls.

Need for TWO loops

We have seen other examples of averaging. N counts the trials, M the successes, and M / N the estimated probability of a success.

We wrap a FOR loop around the trial in order to carry out N of them.

Because the random walk already involves a FOR loop, now we have two loops, one "nested" inside the other.

The Outer Loop (J is the index)

Get N from user.
Set $m=0$;
for $j=1: n$

Do the J-th random walk, and increment M if the person fell.

End prob $=m / n$;

Insight Through

The Inner Loop (STEP is the index)

position $=0$;
for step = 1:20
step_size $=$ randi $([-1,+1])$;
position = position + step_size;
if (position < $-5 \|+5$ < position)
$m=m+1$;
break;
end
end

Insight Through

The Averaging Loop + the Walking Loop

```
\(n=\operatorname{input}(\) 'Enter \(N: '\) )
\(m=0\);
for \(\mathrm{j}=1: \mathrm{n} \quad \leftarrow\) Average N walks
    position \(=0\);
    for step \(=1: 20 \leftarrow\) Each walk takes up to 20 steps.
    step_size \(=\) randi \(([-1,+1])\);
    position = position + step_size;
    if ( position < \(-5 \|+5<\) position \() \leftarrow\) Stop the walk if we have fallen.
        \(m=m+1\);
        break;
    end
end
end
prob \(=m / n ;\)
```

Insight Through

The Prime Number Theorem

In the previous class, we talked about the prime number theorem, which estimates the number of primes you will find between 1 and N :

The number of primes between 1 and N can be estimated as $N / \log (N)$.

We can investigate using a pair of loops

$N=1000$ (or get N as input from the user)
$M=0$

For every integer I from 1 to N
ITSAPRIME = true
For every possible divisor J from 2 to I-1
If I is divisible by J
ITSAPRIME = false
break
end
end

If (ITSAPRIME)
$M=M+1$
End
end
Print $N, M, \log (N) / N$

Insight Through

HOMEWORK

Homework \#1 is due this Friday midnight.
Homework \#2:
hw0091: distance between random points (nested for loops and rand()); hw016: greatest common divisor table (nested for loops) hw023: area under curve $y=h u m p s(x)$ (use "area under curve grid" ideas).

New Concepts

Estimating area under a curve using regular spaced x values;

Break statement;

Nested for loops:

