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Intro Math Problem Solving
September 7 

Last time: FOR, RAND, RANDI
Estimate area under curve
The BREAK statement
Nested FOR loops
Exercises
Homework!
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Your Questions

Q1: Difference between e, f, and g formats?  
What about d format?  

A1: Demonstrate with “printing.m”.

Q2: When using random sampling, how do you 
know that N=1000 tests is enough?  

A2: You don’t!  So you try N=100, N=1,000, 
N=10,000, N=100,000 hoping answers settle 
down.  Demonstrate with “stick_split.m”.  
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integer_prime.m

itsaprime = true;

for i = 2 : j – 1
  if ( mod ( j, i ) == 0 )
    itsaprime = false;
  end
end
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integer_sum.m

s = 0;

for i = 1 : n         Consider i=1,2,3,…,n←

  s = s + i;
end
fprintf ( ‘  Sum is %d\n’, s );
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square_root.m

z = 2017;
x = z;
y = 1;
for i = 1 : 20        Maybe 20 steps is enough?←
  x = ( x + y ) / 2;
  y = z / x;
end
fprintf ( ‘  Square root estimate = %g\n’, x );
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area_under_curve_random.m

n = input ( '  Enter number of sample points: ' );
m = 0;
area_square = 1.0;

for i = 1 : n
  x = rand ( );
  y = rand ( );
  if ( y <= x^2 )
    m = m + 1;
  end
end

area_curve = ( m / n ) * area_square;
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Area Under a Curve, Using a Grid

We estimated the area under the curve 
by putting a box around the picture and 
randomly sampling points in the box.

A more methodical way uses a grid.  For 
this example, we divide the x-interval 
into N equal subintervals, and look at 
the area as a collection of `strips’ with 
a raggedy top.  We approximate each 
strip by a rectangle, and sum.  
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Approximate Area by Rectangles
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Details of the grid

How could we express this in MATLAB?
To make N subintervals, we need N+1 points, 0=0/n, 

1/n, 2/n, …, (n-1)/n, n/n=1.
Because the whole interval is of length 1, each 

subinterval is of length dx=1/n.
Interval I goes from x=(i-1)/n to x = i/n.
The “raggedy top” of the I-th strip is the values 

y=x^2 for (i-1)/n <= x <= i/n.
We approximate the strip by a rectangle, whose 

area is width*height=(1/n)*y, where we have to 
pick just one y value from the raggedy top.
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area_under_curve_grid.m

n = input ( '  Enter the number of intervals to use: ' );

area = 0.0;

for i = 1 : n
  x = i / n;          This is the RIGHT endpoint of interval i←

  y = x^2;           This is the height of the curve at x.←

  area_strip = (1/n) * y;
  area = area + area_strip;
end

fprintf ( '  Estimated area under y=x^2 is %g\n', area );
fprintf ( '  Exact area is %g\n', 1 / 3 );
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Change the problem

Estimate the area under the curve y = sin(x), 
going from 0 to 2 pi.

The interval has changed to [0,2pi], so each 
subinterval has width 2pi/n.

The function sin(x) can be negative, and so we 
count area below the x-axis as negative.

For this particular problem, the exact answer 
is 0, because the positive and negative areas 
will cancel out.

Instead of right endpoints, let’s use left ones!
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Left endpoint rectangle approximation
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area_under_sine_grid.m

n = input ( '  Enter the number of intervals to use: ' );

area = 0.0;
width = 2 * pi / n;

for i = 1 : n
  x = 2 * pi * ( i – 1 ) / n;   This is the LEFT endpoint of interval i←
  y = sin(x);                       This is the height of the curve at x.←
  area_strip = width * y;
  area = area + area_strip;
end

fprintf ( '  Estimated area under y=sin(x) is %g\n', area );
fprintf ( '  Exact area is %g\n', 0.0 );
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Make FOR Loops More Flexible

Using a for loop for square roots, we are 
always taking 20 steps.  But sometimes we 
can tell that after just a few steps, the 
answer x is `good enough’.

When we check if a number is prime, we 
start by assuming it is.  As soon as we find 
a single factor, we know it is not a prime.  
But we keep on, checking all possible 
factors.
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Using the BREAK statement

for i = 1:N

  ...some commands...

  

...maybe more commands...

end

if ( something happens)
      ...maybe print a message 

or do something...
      break;
       end
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integer_prime2.m

itsaprime = true;

for i = 2 : j – 1
  if ( mod ( j, i ) == 0 )
    itsaprime = false;
    break;             no need for further steps! ←
  end
end
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square_root2.m

z = 2017;
x = z;
y = 1;
for i = 1 : 20
  x = ( x + y ) / 2;
  y = z / x;
  if ( abs ( z – x^2 ) < 0.0000001 )    Close enough?←
    break
  end
end
fprintf ( ‘  Square root estimate = %g\n’, x );
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BREAK is helpful

The break statement definitely improves 
the prime calculation.

For the square root calculation, we still 
have to wonder if 20 steps is enough 
for hard problems, and why we picked 
the value 0.0000001 as a tolerance for 
early stopping.  (The WHILE statement 
will help us with the first issue.)
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A Random Walk (with BREAK)

A person is standing in the dark, in the 
exact middle of a 10 foot board.

The person will take 20 steps, each 
randomly chosen to be of length -1 (to 
the left), 0 (stay), and +1 (to the right).

If the person goes beyond 5 feet, they 
FALL OFF.

Simulate this process.
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Planning the Program

A “position” variable, which starts at 0, 
will keep track of where the person is.

A for loop will repeat 20 times.
The step size is a random integer 

between -1 and +1, so we can use 
randi([-1,+1]) to get the steps.

If the person FALLS OFF, then we can 
use break to terminate the calculation.
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random_walk.m

falls_off = false;
position = 0;

for step = 1 : 20

  step_size = randi ( [ -1, +1 ] );
  position = position + step_size;

  if ( position < -5 || +5 < position )
    falls_off = true;
    break;
  end 

end

if ( falls_off )
  fprintf ( '  Fell off on step %d\n', step );
else
  fprintf ( '  Safe at position %d\n', position );
end
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Nested FOR Loops

A for loop lets us do a sequence of items on a list, 
with the for loop index telling us which item we’re 
working on right now.  The index, which might be 
“i”, can be thought of as the row of the list we 
are working on.

Sometimes, it’s more natural to work with a table, 
that is, a collection of items that are stored in 
rows and columns.  In this case, if we use a pair of 
for loops, we can work on each item, always 
knowing what row and column we are working on.  

It is common to use “i’ for rows and “j” for columns.
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An Example From Last Class

for i = 1 : 5
  for j = 1 : i - 1
    fprintf ( ‘%d’, j );
  end
  fprintf ( ‘\n’ );
end

(First line is blank)
1
1 2
1 2 3
1 2 3 4
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Printing a Table

for i = 1 : 3
  for j = 1 : 5
    fprintf ( ‘ %d’, 10*i+j );
  end
  fprintf ( ‘\n’ );
end

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
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Printing Matrix Indices

for i = 1 : 3
  for j = 1 : 5
    fprintf ( ‘ (%d,%d)’, i, j );
  end
  fprintf ( ‘\n’ );
end

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)
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Print a Matrix

The Hilbert matrix H(i,j) = 1/(i+j-1);
Print rows 1:10 and columns 1:4.

for i = 1 : 10
  for j = 1 : 4
    fprintf ( ‘ %10.6f’, 1/(i+j-1) );
  end
  fprintf ( ‘\n’ );
end
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Hilbert Matrix
>>

   1.000000   0.500000   0.333333   0.250000   0.200000
   0.500000   0.333333   0.250000   0.200000   0.166667
   0.333333   0.250000   0.200000   0.166667   0.142857
   0.250000   0.200000   0.166667   0.142857   0.125000
   0.200000   0.166667   0.142857   0.125000   0.111111
   0.166667   0.142857   0.125000   0.111111    0.100000
   0.142857   0.125000   0.111111    0.100000   0.090909
   0.125000   0.111111    0.100000   0.090909   0.083333
   0.111111    0.100000   0.090909   0.083333   0.076923
   0.100000   0.090909   0.083333   0.076923   0.071429
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Printing Divisors of the number I

The number I is divisible by J if mod(I,J) 
is 0.  To print the divisors of numbers 
between 10 and 20, we need two loops.

The outer loop chooses the value of I.
The inner loop considers all possible 

divisors J, 1 <= J <= I.
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Jigsaw Puzzle – Put it together!

end
end
end
for i = 10 : 20
for j = 1 : i
fprintf ( ‘\n’ );
fprintf ( ‘ %d’, j );
fprintf ( ‘Divisors of %d’, i );
if ( mod ( i, j ) == 0 )
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List Divisors of Numbers from 10 to 20

for i = 10 : 20
  fprintf ( ‘Divisors of %d’, i );
  for j = 1 : i
    if ( mod ( i, j ) == 0 )
      fprintf ( ‘ %d’, j );
    end
  end
  fprintf ( ‘\n’ );
end
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Divisor Output

Divisors of 10: 1 2 5 10
Divisors of 11: 1 11
Divisors of 12: 1 2 3 4 6 12
Divisors of 13: 1 13
Divisors of 14: 1 2 7 14
Divisors of 15: 1 3 5 15
Divisors of 16: 1 2 4 8 16
Divisors of 17: 1 17
Divisors of 18: 1 2 3 6 9 18
Divisors of 19: 1 19
Divisors of 20: 1 2 4 5 10 20
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Random Sampling Example

To do random sampling, we use a for loop 
to carry out the process many times.

In cases like our random walk, the 
process itself also involves a for loop.

A program would use nested loops:
    For I = 1 : number of tests
      For j = 1 : 20 (number of steps)
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Is Falling Off Likely?

Running the random walk program, it seems 
like falling off the board is harder to do 
than we might imagine.

Suppose we wanted to estimate the 
probability of falling off?  There are 
mathematical ways to do this, but even 
then, we could use a computation for 
comparison or reassurance.

We need to do N experiments, and count M, 
the number of times the person falls.
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Need for TWO loops

We have seen other examples of averaging.  N 
counts the trials, M the successes, and M/N 
the estimated probability of a success.

We wrap a FOR loop around the trial in order 
to carry out N of them. 

Because the random walk already involves a 
FOR loop, now we have two loops, one 
“nested” inside the other. 
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The Outer Loop (J is the index)

Get N from user.
Set m = 0;
for j = 1 : n

  Do the J-th random walk, and increment M 
if the person fell.

End
prob = m / n;
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The Inner Loop (STEP is the index)

position = 0;
for step = 1 : 20

  step_size = randi ( [ -1, +1 ] );
  position = position + step_size;

  if ( position < -5 || +5 < position )
    m = m + 1;
    break;
  end 

end
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The Averaging Loop + the Walking Loop

n = input ( ‘Enter N:’ )
m = 0;
for j = 1 : n            Average N walks←

  position = 0;
  for step = 1 : 20      Each walk takes up to 20 steps.←

    step_size = randi ( [ -1, +1 ] );
    position = position + step_size;

    if ( position < -5 || +5 < position )   Stop the walk if we have fallen.←
      m = m + 1;
      break;
    end 

end

end

prob = m / n;
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The Prime Number Theorem

In the previous class, we talked about the 
prime number theorem, which estimates 
the number of primes you will find 
between 1 and N:

The number of primes between 1 and N 
can be estimated as N/log(N).
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We can investigate using a pair of loops
N = 1000  (or get N as input from the user)
M = 0

For every integer I from 1 to N

  ITSAPRIME = true

  For every possible divisor J from 2 to I-1
    If I is divisible by J
      ITSAPRIME = false
      break
    end
  end

  If ( ITSAPRIME )
    M = M + 1
  End

end

Print N, M, log(N)/N
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HOMEWORK

Homework #1 is due this Friday midnight.

Homework #2:

hw0091: distance between random points
(nested for loops and rand());
hw016: greatest common divisor table
(nested for loops)
hw023: area under curve y=humps(x)
(use “area under curve grid” ideas).
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New Concepts

Estimating area under a curve using 
regular spaced x values;

Break statement;

Nested for loops;
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