Basics

Variables and Expressions Assignment Statements Built-In Functions
Scripts
Comments
Keyboard Input
Formatting Output

Approach

Preview key concepts by first playing with Matlab as a calculator.

From formula to program.

Three Formulas

- Surface area of a sphere? $A=4 \pi r^{2}$
- Have the cosine of some angle $\theta \in[0, \pi / 2]$ and want $\cos (\theta / 2)$?

$$
\cos (\theta / 2)=\sqrt{\frac{1+\cos (\theta)}{2}}
$$

- Need the roots of a quadratic function?

$$
r=\frac{-b \pm \sqrt{b^{2}+4 a c}}{2 a}
$$

Insight Through

Surface Area Increase

In the Command Window...
>> r = 6365;
>> delta = .000001;
>> A_plus = 4*pi*(r+delta) ^2;
>> A = 4*pi*r^2;
>> Increase = A_plus - A
Increase =
0.15996992588043

Insight Through

Cosine(15 degrees)

$\gg c=c o s(p i / 3) ;$
$\gg c=\operatorname{sqrt}((1+c) / 2) ;$
$\gg c=\operatorname{sqrt}((1+c) / 2)$
c =
0.96592582628907
>> c15 = cos (pi/12)
c15 =
0.96592582628907

Insight Through

$$
x^{2}+5 x+6=(x+2)(x+3)
$$

>> $\mathrm{a}=1$;
$\gg b=5$;
>> $c=6 ;$
>> d = sqrt(b^2 - 4*a*c);
>> r1 = (-b - d)/(2*a)
r1 =

$$
-3
$$

>> r2 $=(-b+d) /(2 * a)$
r2 =

$$
-2
$$

Let's revisit the key ideas above and introduce others...

A Script

\% Quad

\% Solves $x^{\wedge} 2+5 x+6=0$
a = 1;
b $=5$;
c $=6$;
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * a * c\right)$;
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$

Insight Through

Script

A sequence of instructions.

The order of the instructions is important.

A script is a program.

Insight Through

Comments

\% Quad
\% Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$d=\operatorname{sqrt}\left(b^{\wedge} 2-4 * a * c\right) ;$
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$

Insight Through

Comments

Begin with the "\%" symbol. Goes to the end of the line.

Facilitate the reading and understanding of the script.

Insight Through

Comments and Readability

Start each program (script) with a concise description of what it does

Define each important variable/constant
Top a block of code for a specific task with a concise comment.

Arithmetic Expressions

\% Quad
$\%$ Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * a * c\right)$;
ri $=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$

Insight Through

Arithmetic Expression

A recipe that results in the production of a number.

Insight Through

Built-In Functions

\% Quad
\% Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * a * c\right)$;
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$
Insight Through

Built-In Functions

These are "packagings" of more advanced calculations.

Some examples: log, exp, $\sin , \cos , . .$.

Insight Through

Variables

\% Quad

$\%$ Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2\right.$ - 4*a*c);
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$
Insight Through

Variables

- A variable is a "box" holding a numerical value.
- It has a name.
- Names must begin with a letter.
- Names are case sensitive.
- Names can combine letters, numbers, underscore. Example: x1A_New

Assignment Statements

\% Quad
\% Solves $x^{\wedge} 2+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
$d=\operatorname{sqrt}\left(b^{\wedge} 2-4 * a * c\right) ;$
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$
Insight Through

Assignment Statements

Insight Through

Script Execution

Remember...

Instructions are executed in order.
The right hand side is evaluated first:

That value is assigned to the variable named on the left hand side.

Variables on the right hand side must have values before being used.

Question Time

What is the value of X and Y after the following script is executed:

$$
\begin{aligned}
& \mathrm{X}=2 ; \\
& \mathrm{Y}=7 * \mathrm{X} ; \\
& \mathrm{X}=\mathrm{Y} ; \\
& \mathrm{X}=\mathrm{X}+1 ;
\end{aligned}
$$

$A: X$ is 5 and Y is 14
B: X is 15 and Y is 14

C: x is 5 and y is 21

$D: x$ is 15 and y is 2

Question Time

What is the final value of X and Y ?

$$
\begin{aligned}
& >\mathrm{X}=8 ; \\
& >\mathrm{Y}=\mathrm{X} ; \\
& >\mathrm{X}=\mathrm{Y} ; \\
& >\mathrm{X}=2 * \mathrm{X} ; \\
& >\mathrm{Y}=\mathrm{Y} / 2 ;
\end{aligned}
$$

$A: X$ is 16 and Y is 16
$B: X$ is 8 and Y is 8

D: x is 8 and Y is 4

Insight Through

Another Script

\% Quad
\% Solves $a x^{\wedge} 2+b x+c=0$
\% Assumes real roots.

$\mathrm{b}=$ input('Enter $\mathrm{b}: ~ ') ;$
c = input('Enter c: ');
$d=\operatorname{sqrt}\left(b^{\wedge} 2-4 * a * c\right) ;$
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$

Insight Through

The input Command

Variable Name

where to put the value
= input(' Message');
a prompt message in quotes

Processed after the user hits the <enter> key.

Formatting Output

When leaving off the semicolon isn't good
enough.

The tools: disp, fprintf

Insight Through

disp

Displays a string.

Example:

disp('This is a message')

Insight Through

fprintf

Used to format output. Example:

$$
\begin{aligned}
& x=1.23456789 ; \\
& \text { fprintf('x } \left.=\% 5.2 f \backslash n^{\prime}, x\right)
\end{aligned}
$$

Output line will look like

$$
x=1.23
$$

The $\backslash n$ generates a carriage return

A Modification...

$$
\begin{aligned}
& r 1=(-b-d) /(2 * a) \\
& r 2=(-b+d) /(2 * a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { r1 }=(-b-d) /(2 * a) ; \\
& \text { r2 = (-b + d)/(2*a); } \\
& \text { disp(' ') } \\
& \text { fprintf('Root1 = \%10.6f\n',r1)) } \\
& \text { fprintf('Root2 = \%10.6f',r2)) }
\end{aligned}
$$

Insight Through

