## Basics

Variables and Expressions Assignment Statements **Built-In Functions** Scripts Comments Keyboard Input Formatting Output

## Approach

## Preview key concepts by first playing with Matlab as a calculator.

## From formula to program.

## Three Formulas

- Surface area of a sphere?  $A = 4 \pi r^2$
- Have the cosine of some angle  $\theta \in [0, \pi/2]$ and want  $\cos(\theta/2)$ ?  $\cos(\theta/2) = \sqrt{\frac{1+\cos(\theta)}{2}}$

• Need the roots of a quadratic function?  $r = \frac{-b \pm \sqrt{b^2 + 4 ac}}{2 a}$ 

#### Surface Area Increase

In the Command Window...

## Cosine(15 degrees)

>> 
$$c = cos(pi/3);$$

- >> c = sqrt((1+c)/2);
- >> c = sqrt((1+c)/2)
- c =
  - 0.96592582628907
- >> c15 = cos(pi/12)
- c15 =
  - 0.96592582628907

 $X^2 + 5x + 6 = (x+2)(x+3)$ 

;

Let's revisit the key ideas above and introduce others...

## A Script

8 Quad1 Solves  $x^2 + 5x + 6 = 0$ 8 a = 1;b = 5; = 6; C d  $= sqrt(b^2 - 4*a*c);$ r1 = (-b - d)/(2\*a)r2 = (-b + d)/(2\*a)

Script

### A sequence of instructions.

The order of the instructions is important.

A script is a program.

#### Comments

- % Quad1
- $8 \text{ Solves } \mathbf{x}^2 + 5\mathbf{x} + 6 = 0$

- a = 1;
- b = 5;
- c = 6;
- $d = sqrt(b^2 4*a*c);$
- r1 = (-b d)/(2\*a)
- r2 = (-b + d)/(2\*a)

#### Comments

## Begin with the "%" symbol. Goes to the end of the line.

Facilitate the reading and understanding of the script.

## **Comments and Readability**

Start each program (script) with a concise description of what it does

Define each important variable/constant

Top a block of code for a specific task with a concise comment.

### Arithmetic Expressions

- % Quad1
- $8 \text{ Solves } x^2 + 5x + 6 = 0$

- a = 1;
- b = 5;
- c = 6;
- $d = sqrt(b^2 4*a*c);$
- r1 = (-b d)/(2\*a)
- r2 = (-b + d)/(2\*a)

## Arithmetic Expression

# A recipe that results in the production of a number.

#### **Built-In Functions**

- % Quad1
- $8 \text{ Solves } \mathbf{x^2} + 5\mathbf{x} + 6 = 0$

- a = 1;
- b = 5;
- c = 6;
- $d = sqrt(b^2 4*a*c);$

$$r1 = (-b - d)/(2*a)$$

r2 = (-b + d)/(2\*a)

#### **Built-In Functions**

## These are "packagings" of more advanced calculations.

Some examples: log, exp, sin, cos,...

#### Variables

- % Quad1
- $8 \text{ Solves } x^2 + 5x + 6 = 0$

- **a** = 1;
- **b** = 5;
- **c** = 6;
- $d = sqrt(b^2 4*a*c);$
- r1 = (-b d)/(2\*a)
- r2 = (-b + d) / (2\*a)

## Variables

- A variable is a "box" holding a numerical value.
- It has a name.
- Names must begin with a letter.
- Names are case sensitive.
- Names can combine letters, numbers, underscore.
  Example: x1A\_New

#### Assignment Statements

- % Quad1
- $8 \text{ Solves } \mathbf{x}^2 + 5\mathbf{x} + 6 = 0$

- a = 1;
- b = 5;
- c = 6;
- $d = sqrt(b^2 4*a*c);$
- r1 = (-b d)/(2\*a)
- r2 = (-b + d)/(2\*a)

### Assignment Statements



















Instructions are executed in order.

The right hand side is evaluated first;

That value is assigned to the variable named on the left hand side.

Variables on the right hand side must have values before being used.

#### **Question** Time

# What is the value of X and Y after the following script is executed:



#### Question Time

What is the final value of X and Y?

#### Another Script

- % Quad2
- \$ Solves ax<sup>2</sup> + bx + c = 0
- **% Assumes real roots.**
- a = input('Enter a: ');
- b = input('Enter b: ');
- c = input('Enter c: ');
- $d = sqrt(b^2 4*a*c);$

$$r1 = (-b - d)/(2*a)$$

r2 = (-b + d)/(2\*a)

### The input Command



#### Processed after the user hits the <enter> key.

## Formatting Output

# When leaving off the semicolon isn't good enough.

## The tools: disp, fprintf



### Displays a string.

## Example:

#### disp(`This is a message')

## fprintf

Used to format output. Example:

## Output line will look like

x = 1.23

The  $\n$  generates a carriage return

### A Modification...

┛

$$r1 = (-b - d)/(2*a)$$
  
 $r2 = (-b + d)/(2*a)$ 

$$r1 = (-b - d)/(2*a);$$
  
 $r2 = (-b + d)/(2*a);$