
FLORIDA STATE UNIVERSITY

Solving PDEs on GPUs with the Radial Basis
Function Methods

Isaac Lyngaas

April 26, 2015

1 ABSTRACT

The radial basis function-generated finite difference (RBF-FD) method is a method for solv-
ing partial differential equations (PDEs) that is very well suited for parallel computation.
In this paper, a description of how RBFs are used for solving PDEs including the RBF-FD
method will be given. An implementation of the RBF-FD using a single graphics processing
unit (GPU) will then be explored. This GPU implementation will be tested with different
precision arithmetics to determine how this affects the amount of time until solution and
the amount of storage required.

2 INTRODUCTION

In this paper, we will consider the RBF-FD approach for solving PDEs. This approach is
a variant of the RBF direct method which is a very accurate method for solving PDEs that
runs into issues when solving PDEs with large problem sizes. For large problem sizes, the
RBF direct method needs to solve a large dense matrix which has high computational costs
and memory requirements as well as stability issues. The (RBF-FD) sacrifices some of the
accuracy of the direct method in order to solve the PDE with a sparse matrix rather than a
dense one. This change from solving a dense matrix to a sparse matrix alleviates some of the
main problems with the direct method. It turns out that this approach is viable due to its
susceptibility to being parallelized. This susceptibility will be taken advantage of in attempt
to speed up the method using a GPU. In section 3, background information on RBFs that
is necessary for a description of the RBF-FD method will be given. In section 4, the RBF-
FD method will be detailed. In section 5, a strategy for implementation of the RBF-FD on a
GPU will be outlined. Finally in section 6, timing of the GPU implementation with different
precision arithmetics will be done for a test two-dimensional domain.

1

3 RBF BACKGROUND INFORMATION

3.1 MESHFREE METHOD

Many scientific problems can be expressed as PDEs on some spatial domain. In order to
solve these PDEs numerically, the domain is normally discretized into points scattered over
the domain such as the two-dimensional example in Figure 3.1. In order to solve a PDE, tra-
ditional numerical methods such as finite element methods require the creation of a mesh,
like the two-dimensional example in Figure 3.2, that connects discretized points in a well
defined manner. This mesh creation can sometimes be a very costly computation and can
be difficult to program especially for problems with irregular domains and with multiple
dimensions. RBF methods are considered because they do not require a well-defined con-
nection of discretized points. For this reason, RBF methods are called meshfree methods.

Figure 3.1: Discretized 2-D Domain Figure 3.2: 2-D Mesh

3.2 RBF INTERPOLATION

RBFs are real valued functions of the following form

φ(r,ε)

where

r = ‖x−y‖2 =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xd − yd)2 , x,y ∈Rd

denotes the Euclidean distance between two locations in a domain and ε is a parameter that
affects the shape of the RBF. The utility of this shape parameter will not be touched on in this
paper but more information can be found in [2]. Two examples of radial basis functions that
are commonly used are in Table 3.1.

2

Table 3.1: Commonly Used RBFs

Name φ(r,ε)

Multiquadric
√

1+ (rε)2

Gaussian exp(−(rε)2)

Before determining how a PDE can be approximated by these RBFs, a function must be
shown how it can be interpolated using RBFs. The idea behind RBF interpolation is to take a
linear combination of RBFs to make an approximation of the function which in this case will
be name u. To do this, an interpolation function will be found for a given finite set of N data
points (often called centers in RBF terminology) x1, . . . ,xN ∈ Rd that are scattered over the
domain of interest and for which the value of f (x) is known at these centers. An example of
how these centers might look like in a two-dimensional domain are the points in Figure 3.1.
The RBF interpolant becomes

s(x) =
N∑

j=1
w jφ(‖x−x j‖,ε) (3.1)

where the goal will be to find the weights w j for j = 1, . . . ,n. To find these weights, interpo-
lation conditions are enforced by the following equations

s(xi) = f (xi) f or i = 1, . . . , N .

This results in the following N xN linear system

Hw = f (3.2)

where Hi j =φ(‖xi−x j‖,ε), for i , j = 1, . . . , N and fi = f (xi), for i = 1, . . . , N . This system is then
solved to find the weights wi , for i = 1, . . . , N that makes up the approximation function

û(x) =
N∑

i=1
wiφ(‖x−xi‖,ε) (3.3)

to the problem u = f .

3.3 RBF DERIVATIVES

Now that it has been shown how an interpolation function can be found for u = f , one
more thing that is needed in order to describe how PDEs can be solved with RBFs is how
to find the derivatives of RBFs. Since we are normally interested in solving elliptic PDEs,
RBF derivatives up to the second derivative will be found explicitly. The RBFs being used
are sufficiently differentiable and can be written in the form φ(r (x)) where r (x) = ‖x‖, so the
chain rule can be used to find that

∂φ

∂xi
= dφ

d xi

∂r

∂xi

and

∂2φ

∂x2
i

= dφ

dr

∂2r

∂x2
i

+ d 2φ

dr 2
(
∂r

∂xi
)2

3

where

∂r

∂xi
= xi

r
,

∂2r

∂x2
i

=
1− (dr

d xi
)2

r

and dφ
dr and d 2φ

dr 2 can easily be determined based on the RBF used. For more on the derivation
of these equations refer to [7]. These derivatives will be necessary for use in the methods of
the following section.

4 RBF METHODS FOR PDES

Using the RBF interpolation and RBF derivatives from the previous section, methods for
solving PDEs can now be derived. Two methods for solving PDEs with RBFs will be intro-
duced. One is a dense matrix approach called the RBF direct method and the other is a
sparse matrix approach called the RBF-FD method.

4.1 RBF DIRECT METHOD

The RBF direct method takes the approach of modifying the system from Equation 3.2 in
order to solve the elliptic PDE u′′ = f that we are interested in solving. In order to do this,
our interpolation problem from Equation 3.1 is modified to become

∂2

∂x2
i

s(x) =
N∑

j=1
w j

∂2

∂(x1
i)2

φ(‖x−x j‖,ε)+·· ·+
N∑

j=1
w j

∂2

∂(xd
i)2

φ(‖x−x j‖,ε), x ∈Rd . (4.1)

A system of equations is then set up for the centers of the domain being considered x1, . . . ,xN ∈
Rd where the equations are of the form

N∑
j=1

w j

[
∂2

∂(x1
i)2

φ(‖xi −x j‖,ε)+·· ·+ ∂2

∂(xd
i)2

φ(‖xi −x j‖,ε)

]
= f (xi) (4.2)

if xi is in the interior of the domain,

N∑
j=1

w j

[
∂

∂x1
i

φ(‖xi −x j‖,ε)+·· ·+ ∂

∂xd
i

φ(‖xi −x j‖,ε)

]
= g (xi) (4.3)

if xi is on the boundary of the domain and has the Neumann boundary condition g , or

N∑
j=1

w jφ(‖xi −x j‖,ε) = h(xi) (4.4)

if xi is on the boundary of the domain and has the Dirichlet boundary condition h. Again,

4

an N xN linear system has been formed that can be solved to find wi f or i = 1, . . . , N which
forms the approximation

û(x) =
N∑

i=1
wiφ(‖x−xi‖,ε) (4.5)

to the problem u′′ = f .

The RBF direct method is a very accurate method for solving PDEs, however the problem
with using it is that it results in the need to solve a dense system of linear equations. If there
are a large amount of centers, this method can be very computationally intensive and can
potentially have stability problems. Refer to [2] for more information on the stability prob-
lems of the RBF direct method. In addition, the issue of solving the dense matrix becomes
a huge problem in the case of a time dependent PDE where a new matrix would have to be
solved at each time step. Due to these problems the need for the sparse matrix approach of
the RBF-FD method becomes evident.

4.2 RBF-FD METHOD

Rather than finding the interpolating function that approximates a PDE, the RBF-FD method
takes the finite difference approach to solving PDEs with RBFs. Considering that the prob-
lem we are interested in solving is u′′ = f for the center points x1, . . . ,xN ∈R2, at each center
xc we want to find a linear combination of functions values uk at the neighboring n nearest
locations to xc that will form an approximation to u′′(xc). So the differentiation weights ak

need to be found that satisfy
n∑

k=1
ak uk = u′′(xc). These differentiation weights are calculated

by enforcing that this linear combination should be exact for RBFs centered at each center
location. This leads to the following system, where x1, . . . ,xn denote the center points that
are the n nearest in Euclidean distance to xc , that can be solved to find the RBF-FD local
stencil weights for xc .

 φ(‖x1 −x1‖,ε) φ(‖x1 −x2‖,ε) · · · φ(‖x1 −xn‖,ε)

· · · . . .
...

φ(‖xn −x1‖,ε) φ(‖xn −x2‖,ε) · · · φ(‖xn −xn‖,ε)

 a1

...
an

=

∂2

∂x2
1
φ(‖xc −x1‖,ε)+ ∂2

∂x2
2
φ(‖xc −x1‖,ε)

...
∂2

∂x2
1
φ(‖xc −xn‖,ε)+ ∂2

∂x2
2
φ(‖xc −xn‖,ε)

For more information on the derivation of these RBF-FD local stencil systems refer to [4].
Solving one of these systems results in one row of the RBF-FD global stencil matrix H in
Equation 4.6. In total, N systems will be solved to find a local stencil for each center point
x1, . . . ,xN ∈ Rd . These RBF-FD local stencil systems can all be solved simultaneously, so it is
ultimately the thing that is attempted be computed on a GPU. Given that all of these local
stencil weights have been found for each center point, the global stencil system

H û = f (4.6)

can be solved to find the solution to the PDE of interest. In this linear system, ûi is the ap-
proximate solution to the PDE u′′ = f at xi for i = 1, . . . , N and fi = f (xi), for i = 1, . . . , N .
H is an N ×N sparse matrix made up of n elements per row. Each row of H is made up of
the RBF-FD local stencil weights found from the previous step where they are placed in the

5

correct position based on the location of the n neighboring points in x1, . . . ,xN . For an ex-
ample of how these local stencils are placed into the global stencil matrix consider the case
where N = 101 and 5 local stencil weights are found for the center x1 using the 5 nearest
points. Suppose the nearest points to x1 in order are {x1,x21,x8,x18,x2} then the first row of
H will be filled with the local stencil weights a1, . . . , a5 placed accordingly into the positions
{1,21,8,18,2} of the row and zeros will be placed everywhere else.

The linear system in 4.6 will benefit from using a sparse linear system solver as a large por-
tion of the system is zero. Thus, the computational advantage of the RBF-FD over the RBF
direct method has been found. By setting n the local stencil size smaller, the matrix H in
Equation 4.6 becomes more sparse and thus easier easier to solve and the N RBF-FD weight
systems become smaller making them easier to solve, however according to [4] this also de-
creases the accuracy of the method.

5 GPU PARALLELIZATION

In [3] and [6], multi-GPU implementations of the RBF-FD are used to solve time dependent
PDEs, however these implementations are focused more on the parallelization of the sparse
linear system from Equation 4.6 rather than parallelizing the stencil weight calculation. The
justification behind this is that they are solving PDEs on a stationary domain where the sten-
cil weight is a one time calculation. However, it is conceivable for a PDE to have a varying
domain for an example of this refer to [1]. In the case of a varying domain, it would be very
beneficial to parallelize the RBF-FD stencil weight calculation as it would have to been done
multiple times. In this section, the focus will be on offloading the calculations of the RBF-FD
local stencil weight calculation to a GPU in order to speed up computation.

5.1 PARALLELIZATION OF RBF-FD STENCIL CALCULATION

The GPU implementation of the RBF-FD stencil calculation used in this paper is dependent
on several kernel functions that will operate on all of the data points of a given domain dis-
cretization of points. Two of the main kernels were adapted from code written by [5] for a K
nearest neighbors algorithm. The first kernel which will be called the global distance kernel
takes advantage of shared memory on a GPU to find the pairwise distances between each
of the N data points in a given data set. This kernel results in an N × N matrix that holds
distances between each possible combination of data points. The second kernel is one that
takes the distance matrix calculated in the global distance kernel and sorts it to find the K
nearest data points to each data point and returns the indices to these K nearest data points.

Using the calculations from the first two kernels, two more kernels were made that set up the
RBF-FD local stencil systems for all N data points. These kernels benefit from the fact that
all of the distance and index computations are already calculated and exist in GPU memory.
With the local stencil matrix systems set up, CUBLAS batched matrix kernels are then used
to solve the N local stencil systems simultaneously.

For ease of implementation, all GPU kernels were ran so that they did calculations on all of
the data points simultaneously. An emphasis of this implementation is on minimizing the
amount of time spent transferring data to and from the GPU and maximizing the number of

6

data points that can be done at one time. This implementation has a potential to use a large
amount of the GPU memory if many data points are given, so the operations are ordered in
such a way that the amount of GPU memory that is needed at one time is minimized and
data on the GPU is is freed when its no longer needed to avoid overallocation of memory
on the GPU. The workflow for the GPU implementation can be shown as the following list
of tasks given that there are N two-dimensional data points and K nearest neighbors are
specified for local stencil weight calculations.

1. Memory copy of data points to GPU

a) 2×N matrix to hold x and y coordinates for each data point

2. 3 Global Distance Kernel calls to calculate pairwise distances for all data points

a) Euclidean Distance

b) Distance in x dimension

c) Distance in y dimension

3. Kernel call to find K nearest neighbors

4. Kernel call to calculate RHS vectors for the RBF-FD local stencil systems

5. Kernel call to calculate matrices for the RBF-FD local stencil systems

6. CUBLAS kernel call to calculate LU factorization of each RBF-FD local stencil matrix

7. CUBLAS kernel calls to perform forward and backward triangular solves that result in
the local stencil weights of each RBF-FD local stencil system

8. Return local stencil weights and their indices into the global stencil system back to the
host

6 APPLICATION

In this section, the RBF-FD stencil weight calculation is done for a discretized two-dimensional
square domain with evenly spaced points in (0,2)× (0,2). Timing will be done for the GPU
implementation of the stencil weight calculations with single and double precision imple-
mentations to see how they compare.

6.1 TIMING

Timing for the RBF-FD stencil weight calculation is tested on a Tesla M2050 with 2.82 GB of
global memory and a clock cycle of 1.147 GHz. CUDA code for the implementations were
compile using CUDA version 6.5. The plot in Figure 6.1 shows timings with a varying num-
ber of data points and the local stencil size fixed at 16. One thing to notice from this plot
is that the number of data points for the single precision implementation stops at approxi-
mately 13,000 and the number of data points for the double precision implementation stops
at approximately 9,000. The number of data points do not go past these amounts due to the
GPU running out of memory. As can be seen by the plot, very little difference in timings is
noticed between the single and double precision implementations. This makes us believe
that it is not detrimental to use double precision numbers if the number of data points is

7

less than 9,000 and the stencil size is small. Figure 6.2 shows timings where the number of
data points is fixed at 6,400 and the local stencil size varies. From this plot, it is seen that as
the stencil size begins to increase there is an increasing advantage to using single precision
over double precision.

Figure 6.1: RBF-FD timings on a GPU with varying number of data points

Figure 6.2: RBF-FD timings on a GPU with varying stencil size

7 CONCLUSION

In this paper, a GPU implementation was used to calculate the local stencil weights for the
RBF-FD method. Through time testing, it is seen that using different precision accuracy
data types does not have much effect on the time it takes for the GPU implementation with
a small local stencil size. However as stencil size is increased, it becomes beneficial to use
single precision data types to speed up the calculation. Also, it becomes necessary to use
single precision data types if the number of data points becomes too large. Unfortunately
not all of the necessary information is available at this point in order to completely write off
using double precision data types. If it were found that the stencil weights from the single
precision implementation were not accurate enough then the double precision implemen-
tation would need to be used. In future work, the RBF-FD implementations with different
precision data types and stencil sizes will need to be tested in order to find configurations

8

that will get good speed while obtaining adequate accuracy needed from the method. Other
future work would be to devise parallelization strategies for a multi-CPU implementation in
order to have a comparison with this GPU implementation.

REFERENCES

[1] Antonios Armaou and Panagiotis D Christofides. Robust control of parabolic pde sys-
tems with time-dependent spatial domains. Automatica, 37(1):61–69, 2001.

[2] Elisabeth Larsson Bengt Fornberg and Natasha Flyer. Stable computations and gaussian
radial basis functions. SIAM Journal on Scientific Computing, 33(2):869–892, 2011.

[3] Evan F Bollig, Natasha Flyer, and Gordon Erlebacher. Solution to pdes using radial basis
function finite-differences (rbf-fd) on multiple gpus. Journal of Computational Physics,
231(21):7133–7151, August 2012.

[4] Natasha Flyer, Grady B Wright, and Bengt Fornberg. Radial basis function-generated
finite differences: A mesh-free method for computational geosciences. Handbook of
Geomathematics. Springer, Berlin, 2014.

[5] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using
gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE
Computer Society Conference on, pages 1–6. IEEE, 2008.

[6] G Kosec and P Zinterhof. Local strong form meshless method on multiple graphics pro-
cessing units. CMES-Comp Model Eng, 91:377–396, 2013.

[7] Scott A Sarra and Edward J Kansa. Multiquadric radial basis function approximation
methods for the numerical solution of partial differential equations. Advances in Com-
putational Mechanics, 2:2, 2009.

9

