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1 INTRODUCTION

In this project, radial basis functions (RBFs) will be utilized in order to approximate ellip-
tic partial differential equations (PDEs). In order to do this, a method that uses these RBFs
through a collocation scheme will be implemented to find an interpolating function for a
given set of data points. In addition to the implementation of a sample problem in one di-
mension, a two dimensional problem will be solved in order to show how RBFs can be used
to solve PDEs in higher dimension. Along with a comparison to the finite element method,
this method will also be analyzed to determine computational efficiency and error rates.

2 RBF INTERPOLATION

RBFs are real valued functions of the following form

φ(r,ε)

where

r = ‖x‖2 =
√

x2
1 +x2

2 + . . .+x2
d , x ∈Rd

and ε is a shape parameter that affects the surface of the RBF. The utility of the shape param-
eter will be touched on in Section 4 when a sample problem has been implemented. Two
examples of radial basis functions that will be tested are in Table 2.1.

Like using piecewise polynomials basis functions in the finite element method, the goal of
this method is to take a linear combination of these RBFs to create an approximation of a
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Table 2.1: RBFs implemented

Name φ(r,ε)

Multiquadric
√

1+ (rε)2

Gaussian exp(−(rε)2)

function which in this case will be named u. To do this, an interpolation function will be
found for a given finite set of N data points or centers x1, . . . ,xN ∈ Rd for which we know the
value of f (x) at these centers. The RBF interpolant becomes

s(x) =
N∑

j=1
w jφ(‖x−x j‖,ε) (2.1)

where the interpolation conditions are enforced by the equations

s(xi ) = f (xi ) f or i = 1, . . . , N .

This results in the following N xN linear sytem

Hw = f (2.2)

where Hi j = φ(‖xi −x j‖,ε) f or i , j = 1, . . . , N and fi = f (xi ) f or i = 1, . . . , N . This system can
be solved to find the weights wi f or i = 1, . . . , N that makes up the approximation function

û(x) =
N∑

i=1
wiφ(‖x−xi‖,ε) (2.3)

to the problem u = f .

3 SOLVING PDES

Now that it has been shown how an interpolation function can be found for u = f , this pro-
cess needs to modified to solve the problem u′′ = f . To modify the method, an approximation
of the second derivative for the interpolating function needs to be found. In this case, the in-
terpolating function( 2.1) turns into

∂2

∂x2
i

s(x) =
N∑

j=1
w j

∂2

∂(x1
i )2

φ(‖x−x j‖,ε)+·· ·+
N∑

j=1
w j

∂2

∂(xd
i )2

φ(‖x−x j‖,ε), x ∈Rd . (3.1)

The RBFs being used are sufficiently differentiable and can be written in the form φ(r (x))
where r (x) = ‖x‖. Thus, the chain rule can be used to find that

∂φ

∂xi
= dφ

d xi

∂r

∂xi
(3.2)
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and

∂2φ

∂x2
i

= dφ

dr

∂2r

∂x2
i

+ d 2φ

dr 2 (
∂r

∂xi
)2 (3.3)

where

∂r

∂xi
= xi

r
, (3.4)

∂2r

∂x2
i

=
1− ( dr

d xi
)2

r
(3.5)

and dφ
dr and d 2φ

dr 2 can be determined based on the RBF used.

Now that it has been determined how to calculate the derivatives of our interpolating func-
tion, our system from ( 2.2) needs to be modified to handle the boundary conditions that
will be imposed by an elliptic PDE. A nice way to think about how the boundary conditions
could be introduced to the system is to order the Ni centers in the interior of the domain
from i = 1, . . . , NI and the NB centers on the boundary of the domain from i = NI +1, . . . , NB .
Numbering the system this way allows the equations for the system to be formed into two
blocks. The equations are of the following form for the Ni interior centers with x ∈Rd

N∑
j=1

w j

[
∂2

∂(x1
i )2

φ(‖xi −x j‖,ε)+·· ·+ ∂2

∂(xd
i )2

φ(‖xi −x j‖,ε)

]
= f (xi ) f or i = 1, . . . , NI . (3.6)

The equations are of the following form

N∑
j=1

w j

[
∂

∂x1
i

φ(‖xi −x j‖,ε)+·· ·+ ∂

∂xd
i

φ(‖xi −x j‖,ε)

]
= g (xi ) f or i = NI +1, . . . , NB (3.7)

for boundary centers with the Neumann boundary condition g or of the form

N∑
j=1

w jφ(‖xi −x j‖,ε) = h(xi ) f or i = NI +1, . . . , NB (3.8)

for boundary centers with Dirichlet boundary condition h. Obviously the boundary cen-
ters could also be split and reordered in the case where the problem has both Neumann and
Dirichlet boundary conditions. Again, an N xN linear system has been found that can be
solved to find wi f or i = 1, . . . , N which forms the approximation

û(x) =
N∑

i=1
wiφ(‖x−xi‖,ε) (3.9)

for the problem u′′ = f . Refer to [1] for more on the derivation of the equations from Section
2 and Section 3.
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4 APPLICATION

Now that the method has been described in detail and shown that it is generalizable to many
dimensions, it will now be tested with the RBFs from Table 2.1 in a one dimensional and
two dimensional elliptic problem. Analysis will be done on the error results from these im-
plementations and the resultant system from the method will be reviewed to get an idea of
its computational efficiency. In addition, a comparison with an implementation of the finite
element method will also be done.

4.1 ONE-DIMENSIONAL POISSON PROBLEM

As a numerical example, the RBF collocation method is implemented on the following one-
dimensional Poisson problem

−u′′(x) =π2 cos(πx), 0 < x < 1

u(0) = 1, u(1) =−1.

In order to solve this problem, the centers that will be used in the RBF method need to be
determined. To do this, the N centers will be found by evenly spacing them on the interval
(0,1). Once the centers are determined, the equations for the system are of the form (3.6)
where d = 1 or (3.8) based on whether the centers are on the boundary or in the interior of
the domain. The system is then solved for the weights using Gaussian Elimination and the
L2 error is found for the approximating function using the exact solution u(x) = sin(πx). Ta-
ble 4.1 shows the L2 error, condition number for the system, and convergence rates for this
problem with increasing number of centers (and increasing matrix size) for the RBFs in Table
2.1 with shape parameter ε= 1.

Table 4.1: RBF Collocation with Gaussian Elimination

Multiquadric RBF Gaussian RBF
Matrix Size Condition L2 Error Convergence Matrix Size Condition L2 Error Convergence

5 775.016 0.0100661 - 5 1205.11 0.00239383 -
9 1.18179e+07 0.000293511 5.09995 9 1.58361e+10 1.3503e-06 10.7918

17 7.02682e+15 5.34531e-07 9.10092 17 9.4672e+17 7.52846e-09 7.4867
33 2.47597e+18 2.33997e-06 -2.13014 33 2.5591e+19 8.90231e-09 -0.241824
65 8.7493e+18 1.00795e-05 -2.10686 65 7.75284e+18 3.31118e-08 -1.89509

From the results in Table 4.1, it can be seen that convergence rates for this method are very
good when the condition of the system κ(H) < 1016, however the approximation gets less ac-
curate as κ(H) continues to increase past 1016. This makes sense if taken into account the
heuristic from numerical analysis that the solution of a linear system loses k − t digits of ac-
curacy with the machine epsilon εM ≈ 10−t and κ(H) ≈ 10k , which in this case εM ≈ 10−16.
So as κ(H) increases past 1016, the solution for the weights of the approximating function get
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less accurate causing higher error in the approximation.

The problem with the condition number of the systems being solved with this method is di-
rectly related to the RBFs. The RBFs that were used in this method have global support mean-
ing that these functions are nonzero over the entire domain that they are evaluated over. This
causes the system that is being solved to be densely structured thus giving it a higher condi-
tion. Although this will not be illustrated, one way in which the problem of high condition
number can be combatted is to vary the shape parameter ε in order to lower the condition
number refer to [1] for more on this.

In order to do a comparison with another method, the same problem is solved using the
finite element method with piecewise linear elements. The L2 error and convergence rate
from solving the problem with this method with increasing number of nodes(and increasing
matrix size) are in Table 4.2.

Table 4.2: Finite Element Method with Piecewise Linear Elements

Matrix Size L2 Error Convergence
128 3.54958e-05 -
256 8.87405e-06 1.99998
512 2.21852e-06 2

1024 5.5463e-07 2
2048 1.38658e-07 2
4096 3.46644e-08 2
8192 8.6661e-09 2

A simple way in which a comparison can be done between the two methods is to compare the
systems that need to be solved in order to find approximations with similar error. In this case,
a comparison is done with the 17x17 dense linear system that was solved to find an approx-
imation that had an L2 error of 7.52846e −09 from Table 4.1 and the 8192x8192 tridiagonal
linear system that was solved to find an approximation that had an L2 error of 8.6661e −09
from Table 4.2. In this case, it takes O (173) = O (4913) operations to find an approximation
with the RBF method compared to O (8192) operations to find an approximation with the fi-
nite element method that have similar L2 errors. Thus, the RBF collocation method can be
competitive for this problem. Clearly a more thorough analysis needs to be done in cases
where other variations of the Finite Element method are considered, but at least in the case
of piecewise linear elements a comparison like this can show that the RBF method can be a
viable alternative for approximating elliptic PDEs.

4.2 TWO-DIMENSIONAL POISSON PROBLEM

The RBF collocation will now be implemented on the following two-dimensional Poisson
problem

−4u(x, y) = 2π2 sin(πx)sin(πy), (x, y) ∈ (0,2)x(0,2), u(x, y) = 0 on Γ
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Like the one-dimensional problem, the centers need to be determined which will be done by
evenly distributing N centers in the x direction by N centers in the y direction to have N 2

centers over (0,2)x(0,2). The equations for the system are then formed based on the loca-
tions of these centers using equation (3.6) where d = 2 for the interior centers and (3.8) for
the boundary centers. Table 4.3 shows the errors and convergence rates from solving this
problem with an increasing number of centers (and increasing matrix size) for the RBFs in
Table 2.1 with shape parameter ε= 1.

Table 4.3: Error for 2D RBF Collocation

Multiquadric RBF Gaussian RBF
Matrix Size Condition L2 Error Convergence Matrix Size L2 Error Condition Convergence

81 1.17741e+08 0.00525634 - 81 3.91906e+13 0.00157866 -
289 1.63311e+15 2.28267e-05 7.84719 289 1.8334e+19 1.81188e-06 9.767

1089 5.24815e+20 6.00223e-06 1.92715 1089 6.17798e+19 1.52997e-05 -3.07795
4225 1.56265e+21 0.000160482 -4.74077 4225 3.28412e+21 0.000158126 -3.3695

As was the case for the one-dimensional problem, the two-dimensional problem has high
convergence rates as long as the condition number is not too large.

5 CONCLUSION

After investigating solving PDEs with the RBF collocation method, there are several advan-
tages and disadvantages to be noted. One advantage is that this method is meshfree mean-
ing that it would work very well for problems with irregular geometries because it would in-
volve no overhead time for creating a mesh. Another advantage is the ease in which this
method can move to many dimensions. The disadvantages are that the systems created by
the method are densely structured so they are computationally inefficient to calculate and
they quickly become ill-conditioned as the systems grow.
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