FEM Problems in Preliminary Exams

1 Spring 2008
Given the function f(z,y), consider the problem:

Pu u
_@_6—3;2:‘}!‘('3’3’*)’ f01'0<.17,y<1

u(z,0) =u(z,1)=0, for0<z<1 (1)

u(0,y) =u(l,y) =0, for0<y<1

a. Discuss how you would determine an approximate solution of this problem using a

piecewise-linear finite element method. Ag«
b. Discuss the factors that affect the accuracy of finite el ethods for the approx-
imate solution of this problem. %

Solution: ‘Qr

a. Define Q = (0,1) x (0,1),T' = 99, seek u € 15,?5) ={ve H(Q):v=0 on I'}, such

that o
(f,v)z/ﬂfvdv :—/QAu

@% [ v vuav - [P
0 r on
Q} (2)
QL)@‘ vdV = A(u,v). Vo € Hy(Q)
Q

In order to determine an approximation solution, we need to construct a finite dimensional

subspace Sg(Q) éf&},
First make a tri ation of 2, by subdividing 2 into a set T" = {K7, ..., K,,} of non-
K,

overlapping triangles” K,

Q= |J K=KiUKU..UK,,

KcTh

such that no vertex of one triangle lies on the edge of another triangle.
Define S} as follows:

St(Q) = {v: v is continuous on Q,v| is linear for K € Tj,,» =0 on I'}.



Here, v|x denotes the restriction of v to K. The subspace S{(Q) consists of all continuous
functions that are linear on each triangle K and vanish on I The corresponding basis
functions ; € SE(Q), j=1,..., M are then defined by: ( See Figure 1 )

1, i=y;
0, i#j.

Here N;, i =1,..., M are inner nodes of domain {2.

0i(N;) = 6i; = {

Figure 1: An example of piecewise-linear “ha ”; 6& function in 2D

A function u"(z,y) € S§(S2) now has the repres &fl: ( See Figure 2 )

M

uP(z,y) = ; u?so%y)j wy = u"(N;).

Figure 2: An example of piecewise linear function in 2D

Now we can formulate the finite element approximation for problem (1) from weak for-
mulation (2) as: seek u" € SF(Q) such that

Ao = (f,0), V" € SH(Q). (3)
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M
Let u"(z,y) = ZU;‘c,oj(x,y)? v"(x,y) = @i(z,y) and substitute into (3). The result is a

i=1
linear system of M equations with M unknowns {U]'}}L;; i
AU=F. (4)
where A = (A(%), 0i)) 200 U = (U}) 1e1s F = ((£:00)) g

The matrix A is referred to as the stiffness matrix, and easy to show that it is symmetric
and positive definite, so the linear system (4) has a unique solution. We can use direct
methods, like Cholesky decomposition method; or iterative methods, like conjugate gradient
method or multigrid method to solve this system and get the finite element approximate
solution of problem (1).

b. The factors that affect the accuracy of finite element methods for the approximate
solution of this problem are as followed: Ag,

1. Accuracy of the linear system solver;

2. Accuracy of the quadrature rules for the integration; &

3. Regularity level of the triangulation (Delaunay %atlon regular triangulation);
4. Level of triangulation refinement (mesh size),

5. Level of approximation of finite dimensi na.l space S{ to the space H{ (choice of the
basis functions); o

6. Level of the segment approxim the (curve) boundary;

7. Existence, uniqueness a%t@j}ty for the exact solution of the problem;
t

ion of the problem.

8. Smoothness for the e@
Specifically, let u § H} Q) H?(Q) ( this can be guaranteed if f € L*(€) ) and u" be the

Galerkin approxi f u in the space SI(f2), i.e., piecewise- lmear functlon ul satisfies
(3). Then there 3%' ositive constant C, independent of u, h, or u" such that
[lu —u"|lo < Chllulls, ()
[l —u"|lo < Ch?[Jull2, (6)
llu —w"||s < Chllullo. (7)

It is important to note that if the solution « to problem (1) is not smooth enough, i.e.,
u € H}(Q) but u ¢ H*(Q), then (6) and (7) do not hold, in this case only linear convergence
rate can be obtained, one order lower than the optimal rate. This is a consequence of the
approximation theory, not an artifact of our finite element analysis. But it is the most
important factor (the limitation) for all FEM.



2 Spring 2009
Given the functions f(z,y) and g(x,y), consider the problem:

%u  O%u
_@_8—;9’2"‘9(317,’9’)“—_]?(;3,3}), f0r0<;1:,y<1

u(z,0) =u(z,1) =0, for0<z<1 (8)
uw0,y) =u(l,y) =0, for0<y<1

a. Discuss how you would determine an approximate solution of this problem using a
piecewise-linear finite element method.

b. Discuss the factors that affect the accuracy of finite element methods for the approxima-
tion solution of this problem.

Solution: &Q)

Define 2 = (0,1) x (0,1),T = 99, seek u € H}(Q Z%E HY(Q) :v =10 onT}, such
that

(f,v)z/f«udV :f(—Au+gu) vdV %C/vu-vudv—/?vds+/gwdv
Q Q Q ron Q

_ L Vu- VedV —I%gu%/ = A(u,v).
Q) (9)

In order to determine an Wtion solution, we need to construct a finite dimensional
subspace SP(Q) C H(S): ( }

First make a triangulatio Q, by subdividing € into a set T" = {Kj, ..., K,,,} of non-
overlapping triangles'&

Q= |J K=KiUKU.. UKy,

KcTh

such that no vertex of one triangle lies on the edge of another triangle.
Define S§ as follows:

St(Q) = {v: v is continuous on ,v|g is linear for K € Tj,» =0 on T'}.

Here, v|x denotes the restriction of v to K. The subspace S%(£2) consists of all continuous
functions that are linear on each triangle K and vanish on I The corresponding basis



functions ; € SE(Q), j=1,..., M are then defined by:
1, i=y;
pi(Ni) = bi; = { o
0, i# 7.
Here N;, i =1,..., M are inner nodes of domain {2.

Now we can formulate the finite element approximation for problem (8) from weak for-
mulation (9) as: seek u" € SF(Q) such that
A(uh:vh) = (.f: vh): Y e Sg(Q) (10)

M
Let u"(z,y) = ZU;‘@j(x,y), v"(x,y) = pi(x,y) and substitute into (10). The result is a
ij=1

linear system of M equations with M unknowns {U}'}!L,: i ’\g’
AU=F. (11)
where A = (A(%;,2i)) 00 U = (U}) 1o F ?9"%)) &
The matrix A is symmetric and positive definit, x,y) > 0), so the linear sys-
tem (11) has a unique solution. We can use dlrec@thods like Cholesky decomposition
method; or iterative methods, like conjugate radient method or multigrid method to solve

this system and get the finite element ig)pro te solution of problem (8).

b. The factors that affect the ac of finite element methods for the approximate
solution of this problem are the sar@)a we described in Spring 2008.

Y

%'\/



3 Summer 2009

Consider the two point boundary value problem (BVP)
2
da? dx
u(a) = 0, (12)
au(b) +/'(b) = 1.

where p, g, a are scalars.

a. Write down a weak formulation of this problem. Show that a solution to this classical
two point BVP is also a solution of your weak problem. Is the converse always true?
Why or why not?

b. Suppose we want to approximate the solution of the weak problem using continuous,
piecewise linear polynomials defined over a uniform partitionz;%j = 0, ...,n+1 of [a, b]
where zy = a,x,,, = b. Write a discrete weak problem§®

c. Assume that we use the standard “hat” basis fun + Show that once the basis
functions are chosen we can write the discrete roblem as a linear system. If
p =q = a = 0, what are the properties of this li system? Explicitly determine the
entries of the coefficient matrix when p = ¢ :(@f 0 in this linear system assuming we
use the midpoint rule to compute the e%fs.

d. Discuss the rates of convergence I bothwthe H! and L? norms that you expect using

continuous, piecewise linear pol@als.

Solution:
a. The weak formulation-y blem (12) is as followed:
Seek u eV = v|ff;,</f1(a? b),v(a) = 0}, such that

A(u,v) = F(v), Yve V. (13)

b b
where A(u,v) = / (u'v" + pu'v + quov)dz + au(b)v(b), F(v) = / Jvdx + v(b).

Note that if u(x) is the classical solution of (12), then u(x) also satisfies the weak problem
because for v € V'



= f fvdz +v(b) = / (=" + pu’ + qu)vdz + v(b)
= / (v + pu'v 4 quou)da + o' (a)v(a) — o/ (b)v(b) + v(b). (14)

b
= / (w0 + pu'v + quo)dz + au(b)v(b) = A(u,v).

Conversely, if u € V satisfied (13) and if u is suffeciently smooth, i.e., u € C?%(a,b),
a situation which can be guaranteed if f is sufficiently smooth, then u coincides with the
classical solution of (12). The homogeneous Dirichlet boundary conditions u(a) = 0 are
satisfied because u € V' and the differential equation holds because

A(u,v) — F(v) /: (v + pu'v + quv)dz + au(b)v(b) (fb@x - v(b))
—/( u +pu +qu— f vd.:c—l— u(% b)—l (b) — u/(a)v(a)

0.  WweV Q .

Since (15) holds for arbitrary v, in particular for o( (bb 0, we get

—u" % pu’ % f=0 (16)

Thus (15) is reduced to 9
((u@) au(b) — 1)v(b) =0 (17)
Again since (17) holds for ﬁ}-\)@m? we get

u'(b) + au(b) —1 =10 (18)

However, if u.4d o%.tﬂiciently smooth, i.e., u ¢ C?(a,b), then the converse is not true.

b. Choose S* C'V to be the space of continuous piecewise linear polynomials defined
over a uniform partition z;,j7 = 0,...,n 4+ 1 of [a,b] where zy = a,x,,; = b, which satisfy
the homogeneous Dirichlet boundary condition «(a) = 0. Then the discrete weak problem
of (13) is as followed:

Seek u" € S", such that

A(ul by = F(vh), Yok € Sh, (19)



c. Consider the standard “hat” basis functions:

s

I — ;1
ﬁj T e [xj—lﬂxj];
J i
(1) = Liy1 — & .
(p_,_.(.r) 9 ﬁg S [‘Bj:‘rj—l—l]; (.5‘ = 11'“?“) (20)
J J
| 0, elsewhere.
(T — @,
ﬁ’ HAS [$m‘rﬂ+l]5
Prpr(z) = Fntl T En (21)
0, elsewhere.

Clearly ¢;(x) € S"(a,b) for 1 < j < n+ 1. Moreover,

1, if i=yj; Ag,
P (.17% = z =
! ’ { 0, otherwise. &Q)

for1 <j<n+1land0<i<n+1and it is easy to justi at the function defined in (20)
and (21) form a basis for S"(a,b).

(22)

n+1
Since u"(z) € S"(a,b), let u"(z) = ZU o5 x)@ = @;(«) and substitute into (19).

The result is a linear system of n + 1 e!;uatlc%wth n + 1 unknowns {U "};‘+11,
(23)
where A = (A((,Dj,(goz (n-l—]) ('n-l—l)xl’ (F((ioi))(n+1)x]

fp=g=a=0, A(u v) w'v'dx, let h =z, —x; (j =0,...,n), then by using the

midpoint rule in e %nent to eva.luate the integrals, the entries of A are given explicitly
by

n+1
= (o) = 3 by (AT (PR T (24)

In our case, A" = A, recall that we have chosen S"(a,b) as the space of continuous piecewise
linear functions and thus the integrands in A are constant on each element Ty, the midpoint
rule integrates constant functions exactly even though we are implementing a quadrature
rule, we have performed the integrations exactly, so the entries of A can be computed as



followed:

b T3 Tjt1
Alpj, pi) = / ¢ipide = f PPz + f 2de
(e} Ti_1 T

a

Tz Tit1
:/ (%)derf (_%)de (j=1,..,n+1) (25)

i—

= b0

b Tit1
A(pjs pir1) = Alpj+1, 95) :/ ¢ipide :f @3¢

)

:fmj+1(%)(—%)d$ G=1,..,n) (26)

1 0 -1 2 : (27)
I

0o -0 -1 2
And it is easy to prove that the matrix®A is sypimetric, positive definite and tridiagonal.

d. let w € V N H?(a,b) ( this can B@aranteed if f € L*(a,b) ) and «" be the Galerkin

approximation of u in the space S"( , 1.e., piecewise-linear function »" satisfies (13). Then
there exists a positive consw ependent of u, h, or u” such that
[l —u"|lo < Ch?[Jull, (28)

N [ = u}s < Chlful]> (29)

i.e., the rate of convergence in the L? norms is O(h?), which is quadratic convergence, and
in the H! norms is O(h), which is linear convergence.



4 Spring 2010
Consider the diffusion equation

Up = Qlgy (30)
with the initial and boundary conditions

u(‘rao) = g(‘r)a ’L-:(U’t) = ur, u(lat) = UR- (31)

The function g(z) is prescribed over the interval 0 < z < 1, and o, uy and up are constants
and a > 0.

a. The backward-time difference scheme can be used to convert the above initial-boundary
value problem into a two-point boundary value problem (BVP) at every time step.
Carry out the details of this step and develop this BVP. (20%)

b. Develop a complete piecewise-linear Galerkin-type finite element scheme to solve the
resulting boundary value problem derived in part (a). (TO‘Q)

c. Comment on the numerical stability of the backward-time finite element scheme de-

veloped in (a) and (b) above. (10%) %

Solution: 'Q’

a. Let At, =t" —t""1(n > 1) and ¢° = 0, by using the backward-time difference scheme
to approximate u; term, we get

)
T ’L-:(;I?, tn) _ ’L-:(;:C, tn_l)
(@, t ).ey At (32)

Replacing the term u; by tt:j@gge quotient in (30), we get

7, t") — u(z, t"1)
o At,,

%;\/ u(z,t") — aAtptg,(z,t") = u(z, ") (34)
where n > 1, since for each time step, u(z,#"~!) is known, then (34) with the boundary

condition »(0,¢") = uy and u(1,t") = up is a two-point boundary value problem (BVP),
converted from the above initial-boundary value problem at every time step.

= au,,(w,t") (33)

10



b. Let U(z) = u(z,t"), the resulting boundary value problem derived in part (a) is as

followed:
Uz) — At Upe(z) = w(z,t™!), 0<z<1

U) = up, (35)
U(l) = ug.
Let p(x) be a sufficiently smooth function where p(0) = up,p(1) = up and w(z) = U(z) —
p(x), then the problem (35) convert to the following problem:
w(z) — aAtywe (v) = w(r, ") + aAt,pe(z) —p(z), 0<z<1
w(0) = 0, (36)
w(l) = 0.

The weak formulation of problem (36) is as followed:

(37)

A(w,v) = F(v) — A(p,v), Vv € H&@@
S

1
where A(u,v) = / (At ()" (x) + u(z)v(z))de, @: / u(w, " o(z)dw.
0 0
Choose S,’_f,‘ C HE} (0,1) to be the space of continu(ta)piecewise linear polynomials defined

over a partition x;,j = 0,...,n+1 of [a, b] where zy = 0, z,,1 = 1, which satisfy the homoge-
neous Dirichlet boundary condition (0% =0 u(1) = 0. Then the discrete weak problem

of (37) is as followed: AQ,
Seek w" € S}, such that Q)
AQ’B{»\: F(o") — A(p",o"), Wo" € S} (38)

Consider the standard “hat” basis functions:

N’ £r — i1
J . . o]
PR T e [-17_;;_11-17_;5];
.BJ —.Bj_l

Seek w € H}(0,1), such that Ag,
1

() = Ljy1 — & :
pil@) = THTT e ) (G=1,..,n) (39)
Tjt1r — &5
0, elsewhere.

.
Cleary ¢;(x) € Sk(0,1) for 1 < j < n. Moreover,
1, if i=yj;

pj(wi) = 0ij = { (40)

0, otherwise.

11



for 1 <j<nand 0 <i<n+1and it is easy to justify that the function defined in (39)
form a basis for SZ(0,1).

Since wh(x) € Sk(0,1), let wh(z) = i Wle;(x), v"(x) = ¢;(x) and substitute into (38).
The result is a linear system of n equatj::l;ils with n unknowns {H/;‘ }r_q; e,
AW = F. (41)
where A = (A(¢j,%4)) s W= (W]), 1, F = (Fl9i) — Alg, ) .1
At the end, U"(z) = w"(z) + p(x) is the FEM solution by the request.

c. The backward-time finite element scheme developed in (a) and (b) above is uncondi-
tional stable, i.e., this scheme is stable regardless of the size of the time steps.

S
Q
5

12



5 Spring 2011
Consider the simple 1-D diffusion equation:

ou B 0%

subject to
u(0,t) =u(l;t) =0, ¢t>0 (43)
u(z,0) =ug(x), 0<z<I (44)

Using Galerkin approximation with piecewise linear basis function which satisfy the bound-
ary conditions
8,(0) = B,(1) = 0 (45)

a. Show that if we use approximate solution

Ule,t) = i}w(t)@j(x (Z:g (46)
- \%

i { b” + ujgij =0, Q’Q (47)

That we obtain

i=1
where ;
e dd; '—%)2 : .
Gij —/0 o Eda:, ,j=1L2,..., N (stiffness matrix) (48)
b;; / D, b, d =1,2,..,N (mass matrix) (49)
i.e., a system \Q
BU+GU =b ( here b=0) (50)
where J

N B = (&;,8)) (51)
‘%’ G = a(‘I’ja ®;) (52)

b. Show that if h is the element size, we have that matrices B and G have the following
entries

4 -
1 41

o =

(53)

NS

13



for piecewise linear hat basis functions on regular mesh.
Solution:

a. The weak formulation of problem (42) is as followed:

(54)

For a fixed time T, seek U € Ly(0,T; H}(0,1)),U; € Lo(0,T; H-1(0,1)) and U(z,0) =

ug(x), such that

(Utaﬂ) + (Uzav.?:) =0, Vv € HIJI(O:"E) &,

Let U(x,t) Zuj(t i(z), v=®;(x) and replace them t@ equation (55), we get

fz d“‘-”@@ do; dd; ¥§i:1,2,...,N

T de

So we obtain o ¢ ),
N du,
E:{ Sy, @} i=1,2,.,N

J=1

where
/ ., N (stiffness matrix)
by / ®;b,de, 4,7=1,2,...,N (mass matrix
%’:’yo o, i,j=1,2,.,N ( )
i.e., a system

BU+GU =b ( here b=0)

where

B = (2, %)
G = a(cbja (I)i)

14
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(56)

(57)

(58)

(59)

(60)

(61)
(62)



l Tj T4l
B(%‘;%‘)Z/ pda :f 2d$+f pjda
0

Jtl —
f (=, +f (TR (j=1,..N)

zgh

1 Tip1
B(%%H):B(%H;%):/ pjpi+rde :f pjpi+rda
0 T

)

=

a

So )
4
1

‘?feo.

Q) / )de+fI (—E)zdx (j=1,..,

\/ :E
l Tl
G(pj, pi+1) = G(#j11,95) :/é @5y 1da :/ ¢ pde

3

_ [T T
= [T E

=z Q)&

Ti+1
By

==

15

N -1)

(63)

(65)

(66)

(67)



(68)
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6 Summer 2011

a. Let  be a bounded domain in R? with boundary I' = T'; UT'y where I'; Ty = (). Consider
the following PDE and boundary conditions for u(z,y)

—Au + uuy = f(‘ra y)? (‘B: y) €Q (69)
u=0 on T, @:4 on Ty (70)
on

and the weak formulation

Seek u € H! satisfying

fVu-Vv+[uuzv:ffv+4/ v, YveH! (71)
Q Q Q I,

where H! is all functions that are zero on I'; and which possess onesweak derivative. Here
Au = ugy + uy, and Ju/On denotes the derivative of u in the 'f%j@n of the unit outer
normal, i.e., Vu - 7i. Show that if u satisfies the classical bo value problem then it
satisfies the weak problem. Then show that if « is a sufficie ooth solution to the weak
problem, then it satisfies the PDE and the boundary conditiens.

Solution: @Q

If u satisfies the classical boundary value problem (69), multiplied by an appropriate test
function v, integrating over the domajrq‘ we %

/ — AuQ!yz)v = / fv, veH! (72)
Q @ Q
then use the Green’s formu \Q@

(
8% Ea 1
Vu- wuzv = [ fo+ 3.0 Yve H (73)
) Q Q T2

0
replacing the bo% ¢ondition % =4 on I'; in (73), we get

fVu-Vv+fquv:ffv+4/ v, YveH! (74)
Q Q Q Iy

Conversely, if u is a sufficiently smooth solution to the weak problem, by using the Green’s

formula
fVu-VU+fquv—ffv—4/ v
Q Q Q I,

du

( )

17



Since (75) holds in particular for all v =0 on T, so

—Au+uu, = f (76)
Thus (75) is reduced to
ou
/F2 (2 —a)v=0 (77)
Now varying v over H!, which means that v will vary freely on I's, we finally get
0
%’ =4 on Iy (78)

then « satisfies the PDE and the boundary conditions.

S
Q
5
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DSC Prelim Exam Spring 2012

4. Finite Elements

Suppose that u € H'(Q) is a solution of the Poisson equation —Au = f in
the domain 2, and that for some constant o > 0, u satisfies the mixed boundary
condition au + % =0 on 0.

Recall that H' () is the set of functions v : Q2 — R such that v and all first
derivatives are square integrable over 2.

a) Show that u satisfies the weak equation:

Vu~Vv+a/ uv= [ fv forallve HY(Q)

Q [219] Q

Answer: We choose to multiply the Poisson equation by a vector v € H*(£2):

—Auv+oauv=fov

/—Auv—l—auv:/fv
Q Q

and now we use Green’s identity:

and integrate:

V- (Vuv) =Vu-Vo+ Auv

to arrive at:

/VU-VU—/ (Vuv)-ﬁ:/fv for all v € H'()
Q 19) Q

but, noting that Vu -n = %Zv the boundary conditions allow us to rewrite this

as
/Vu-Vv+a/ uv:/fv for all v € H' ()
Q a0 Q

b) For any u,v € H!(Q2), define:

B(u,v)E/Vu-Vv+a/ uv
Q G19)

Show that B(u,v) is an inner product on H!(f2).
Answer: An inner product < z,y > must satisfy the following four condi-
tions for all vectors z,y, z and scalars (:

1. <z,y >=<y,x >;
2. < Br,y>=p<x,y>;

3. <x+y,z>=<x,2>+ <Y,z >;



4.

0<<ax,x>, and < x,z >= 0 implies x is the zero vector.

We see from the definition of B(u,v) that

1.
2.
3.
4.

symmetry because of how integrals work;
a scalar 8 will factor out;
linearity allows the integral to be rewritten as needed;

B(v,v) is guaranteed to be nonnegative. If B(v,v) = 0, then v must be
the zero function, and this is true even if « is 0.

Therefore, B(u,v) is an inner product on the vectors u € H ().

c¢) Use your answer to b) to show that a solution of the weak equation is
unique.

Answer: Suppose that vectors u; and us both satisfy the weak equation.
Then we have B(ui,v) = B(ug,v) = [, fv forallv € H'(Q). Therefore,
B(uy — uz,v) =0 for all v € H'(Q). But then u; — uy is an element of H'()
with zero boundary conditions, so we can take v = uy — us in the equation, that
is, it must be true that B(u; — ug,u; — us) = 0. Because B(x,x*) is an inner
product on vectors in H1(2), we therefore have ul = u2, that is, if there is a
solution of the weak equation, it is unique.



