ISC 5935 - Computational Tools for Finite Elements Homework # 4 - Solution

1. The table I got.

Ν	L2 ratios	H1 ratios
4	3.913042	1.950864
8	3.978432	1.987806
16	3.994618	1.996957
32	3.998655	1.999240
64	3.999664	1.999810

This table shows the factor by which the error decreases as we double the number of elements. Doubling the number of elements also halves the H^1 error and reduces the L^2 error by a factor 4. Let h = 1/n. We speculate that the L^2 error decays like $O(h^2)$, while the H^1 error decays like O(h).

Here's the code snippet for computing the error:

```
def compute_error(ua,ue,uep,x,xg,wg):
  .....
  Compute the integral of a function, using a composite Gauss rule over
  all elements.
  Inputs:
             - double, array of finite element coefficients
    ua
             - function, exact solution
    ue
             - function, derivative of the exact solution
    uep
             - double, list of finite element nodes.
    х
             - double, Gauss nodes on the interval [0,1]
    xg
             - double, Gauss weights
    wg
  Outputs:
    error_12 - double, L2 error
    error_h1 - double, H1 error
  .....
  # Initialize the the L2 and H10 errors
 12_{error} = 0.0
 h1_error = 0.0
```

```
n = len(x) - 1
for e in range(n):
  1 = e
  r = e + 1
 xl = x[1]
  xr = x[r]
  # Consider quadrature point Q: (0, 1, 2 ) in element E.
  for q in range ( len(xg) ):
    # Map XG and WG from [0,1] to
    #
          XQ and QQ in [XL,XR].
    xq = xl + xg[q] * (xr - xl)
    wq = wg[q] * (xr - xl)
    # Evaluate at XQ the basis functions and derivatives for XL and XR.
   phil = (xr - xq) / (xr - xl)
    philp = -1.0 / (xr - xl)
   phir = (xq - xl) / (xr - xl)
   phirp = 1.0 / (xr - xl)
    # Evaluate at XQ the finite element approximation
    ua_loc = ua[l]*phil + ua[r]*phir
    uap_loc = ua[l]*philp + ua[r]*phirp
    # Evaluate the exact function and its derivative at XQ
    ue_loc = exact_fn(xq)
    uep_loc = exact_fn_der(xq)
    # Compute the
    12_error = 12_error + wq * (ua_loc - ue_loc)**2.0
    h1_error = h1_error + wq * (uap_loc - uep_loc)**2.0
# Take square roots
```

```
2
```

```
12_error = np.sqrt(12_error)
h1_error = np.sqrt(h1_error)
return 12_error, h1_error
```

2. Output:

```
The spatial average of u:
n u_ave
2 0.028846
4 0.035648
8 0.037325
```

Here is the code that computes the average:

```
def compute_average(ua,x,xg,wg):
 .....
Compute the spatial average of a finite element function ua
 Inputs:
  ua - double, finite element coefficients of the function
  x - double, finite element nodes
  xg - double, Gaussian quadrature nodes on [0,1]
   wg - double, Gaussian quadrature weights on [0,1]
Outputs:
   u_ave - double, spatial average of ua
 .....
# Initialize the average
ua_ave = 0.0
# number of elements
n = len(x)-1
for e in range(n):
  1 = e
  r = e + 1
  xl = x[1]
   xr = x[r]
```

```
# Consider quadrature point Q: (0, 1, 2 ) in element E.
for q in range ( len(xg) ):
    # Map XG and WG from [0,1] to
    # XQ and QQ in [XL,XR].
    xq = xl + xg[q] * ( xr - xl )
    wq = wg[q] * ( xr - xl )
    # Evaluate at XQ the basis functions for XL and XR.
    phil = ( xr - xq ) / ( xr - xl )
    phir = ( xq - xl ) / ( xr - xl )
    # Evaluate at XQ the finite element approximation
    ua_loc = ua[l]*phil + ua[r]*phir
# Update the average
    ua_ave += wq * ua_loc
```

return ua_ave

3. To check whether the function is flat at the right endpoint, we compare the computed finite element coefficients corresponding to the rightmost two x-values.

Here is the code:

```
#
def fem1d_model ( ):
#
## FEM1D_MODEL solves a 1D "model" boundary value problem using finite elements.
#
#
  Location:
#
#
     http://people.sc.fsu.edu/~jburkardt/py_src/fem1d/fem1d_model.py
#
#
   Discussion:
#
#
     The PDE is defined for 0 < x < 1:
#
       -u'' + u = x^3 + 3x^2 - 15x - 6
#
     with boundary conditions
       u(0) = 0,
#
       u'(1) = 0.
#
#
#
     The exact solution is:
       exact(x) = x^3 + 3x^2 - 9x
#
#
#
#
  Licensing:
#
     This code is distributed under the GNU LGPL license.
#
#
#
  Modified:
#
#
     23 September 2014
#
#
   Author:
#
#
     John Burkardt
#
#
  Local parameters:
#
#
     Local, integer N, the number of elements.
#
  import numpy as np
  import scipy.linalg as la
```

```
#
  The mesh will use N+1 points between A and B.
#
# These will be indexed X[0] through X[N].
#
  a = 0.0
  b = 1.0
  n = 50
  x = np.linspace (a, b, n + 1)
#
#
  Set a 3 point quadrature rule on the reference interval [0,1].
#
  ng = 3
  xg = np.array ( ( \setminus
    0.112701665379258311482073460022, \
    0.5, \
    0.887298334620741688517926539978 ) )
  wg = np.array ( ( \setminus
    5.0 / 18.0, \
    8.0 / 18.0, \
    5.0 / 18.0 ) )
#
#
  Compute the system matrix A and right hand side RHS.
#
  A = np.zeros ((n + 1, n + 1))
  rhs = np.zeros (n + 1)
#
#
  Look at element E: (0, 1, 2, ..., N-1).
#
  for e in range ( 0, n ):
    1 = e
    r = e + 1
    xl = x[1]
    xr = x[r]
#
```

```
#
   Consider quadrature point Q: (0, 1, 2) in element E.
#
    for q in range ( 0, ng ):
#
#
  Map XG and WG from [0,1] to
#
       XQ and QQ in [XL,XR].
#
     xq = xl + xg[q] * (xr - xl)
      wq = wg[q] * (xr - xl)
#
#
  Evaluate at XQ the basis functions and derivatives for XL and XR.
#
      phil = (xr - xq) / (xr - xl)
      philp = -1.0 / (xr - xl)
     phir = (xq - xl) / (xr - xl)
      phirp = 1.0 / (xr - xl)
#
#
   Compute the following contributions:
#
#
    L,L L,R L,Fx
#
     R,L R,R R,Fx
#
      A[1][1] = A[1][1] + wq * ( philp * philp + phil * phil )
      A[l][r] = A[l][r] + wq * ( philp * phirp + phil * phir )
      rhs[l] = rhs[l] + wq *
                                                phil * rhs_fn ( xq )
      A[r][1] = A[r][1] + wq * ( phirp * philp + phir * phil )
      A[r][r] = A[r][r] + wq * ( phirp * phirp + phir * phir )
      rhs[r] = rhs[r] + wq *
                                                phir * rhs_fn ( xq )
#
# Modify the linear system to enforce the left boundary condition.
#
 A[0,0] = 1.0
 A[0,1:n+1] = 0.0
 rhs[0] = 0.0
#
#
  Solve the linear system.
#
 u = la.solve ( A, rhs )
```

```
print ""
  print "Is the function flat at the right endpoint?"
  print "u(%f) = %f" % (x[-2],u[-2])
  print "u(%f) = %f" % (x[-1],u[-1])
#
# That is the end of the main program.
# Now we list some helper functions.
#
def exact_fn ( x ):
#
## EXACT_FN evaluates the exact solution.
#
  value = x**3 + 3*x**2 - 9*x
  return value
def rhs_fn ( x ):
#
## RHS_FN evaluates the right hand side.
#
  value = x**3 + 3*x**2-15*x-6
  return value
#
# If this script is called directly, then run it as a program.
#
if ( __name__ == '__main__' ):
  fem1d_model ( )
```

and here is the output

```
Is the function flat at the right endpoint?
u(0.980000) = -4.997726
u(1.000000) = -5.000118
```

The function values indeed look close.