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Theorem 2.4 for ca. This is partly due to the factor #(V), but it also dependy
on the need for bounds from approximation theory for maxy e (M),

The results of Theorem 4.1 can be used to gain insight into the convergenea

behavior of GMRES by taking the kth root of (either of) the bounds. In particulay,
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(V) does not depend on k, and it thercfore follows that x(V)V/¥ -1 ag
increases. This suggests consideration of the limit
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Since GMRES constructs the exact solution in a finite number of steps, this does
not lead to a simple statement about the error at any given step of the com-
putation. However, it does give insight into the asymptotic behavior for large
enough k: as the iteration proceeds, it can be expected that the norm of the
residual will be reduced by a factor roughly equal to p at each step. We refer
to p of (4.8) as the asymptotic convergence factor of the GMRES iteration. It is
an interesting fact that asymptotic estimates for large k are often descriptive of
observed convergence behavior for k € n. It is rarely the case that n iterations
are necessary for an accurate solution to be obtained.

For later analysis, we mention that for a simple (stationary) iteration {as
in (2.26)) with iteration matrix T' = M~ 1R, the norms of successive error vectors
will asymptotically (for large numbers of iterations) reduce by a factor which is
simply the eigenvalue of 7 of maximum modulus. We will therefore denote by
p(T) the eigenvalue of T' of maximum modulus since this reflects the ultimate
rate of convergence for a simple iteration as does p defined above for GMRES
iteration.

Returning to GMRES, a bound on p can be obtained using the fact that any
polynomial xx € Iy with xx(0) =1 satisfies, for any set £ that contains the
eigenvalues of F,
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This was used in Theorem 2.4 to construct a bound on the error for the GG
method, where xx was taken to be a scaled and translated Chebyshev polynomial.
The same approach can be used to derive a bound on the asymptotic convergence
factor for the GMRES method when the enclosing set £ is an ellipse in the complex
plane.

Theorem 4.2. Suppose F is diagonalizable and its eigenvalues all lie tn an
ellipse £ with center ¢, foci ¢ = d and semi-major aris a, and £ does not can-
tain the origin. Then the asymptotic convergence factor for GMRES iteration 15




