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ZCTION-DIFFUSION PROBLEMS

_anczos algorithm, and (4.1) is identical
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H[J‘oe1 - ﬁky(k)“ is minimized,
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on for solving systems of equations,
wice v = r® /3, with 8y = x| ns

4 Viy® (4:2)

it the first line of (4.1) can be rewritten
+t the residual satisfies

: Viett (.3081 = ﬁky(k)) a (4:3)

vector of size k. The vectors {v(f)} are

|ﬂue1 - ﬁky(k)“ - (44

te (4.2) with smallest Euclidean norm i3
ninimizes the expression on the right e

s problem can be solved by transforming
vhere Ry is upper triangular, us:ng b+
i to fge;). Here, ﬁk contains Hy.p #& 0
nentation, Ry can be updated from Riet:
at leading to (2.37), it can be shown _llmt
it. Hence, a step of the GMRES nigorithi
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consists of constructing a new Arnoldi vector v{*+1) determining the residual
porm of the iterate r*) that would be obtained from Ki(F, @) and then either
constructing u'®? if the stopping criterion is satisfied, or proceeding to the next
gtep otherwise.

By construction, the iterate uf® generated by the GMRES method is the
member of the translated Krylov space

ul® 4 Ky (F, r©)
for which the Fuclidean norm of the residual vector is minimal. That Is,

k) — i (0}
r = min Fyr . 4.5
WPl = omin Py (4.5)
As in the analysis of the G method, the Cayley-Hamilton theorem implies that
the exact solution is obtained in at most n steps. Bounds on the norm of the
residuals associated with the GMRES iterates are derived from the optimality
rondition.

Theorem 4.1. Let ul*) denote the iterate generated after k steps of GMRES
iteration, with residual v®), If F is diagonalizable, that is, F = VAV ™! where A
i1 the diagonal matriz of eigenvalues of F, and V is the matriz whose colummns
ire the eigenvectors, then

g .
< r(V .
[+ = t )meﬂi?;:f(n)ﬂn}\?x 25 (A5 )1, (4.6)

where k(V) = [IVI| |Vl is the condition number of V. If, in addition, £ is any
st that contains the eigenvalues of F, then

e < g

@] = max [p(A)]. (4.7)

min
P €T, pi(0)=1 AEE

Proof Assertion {4.6) is derived from the observations that. for any polyno-
miil Dk,
e (F)ON = [[Vpe ()Y - 10 @)

SAVINY =2 lpe () e
<ivinv-"i max |pe ()| =@

The bound (4.7) is an immediate consequence of (4.6). O

These “minimax” bounds generalize the analogous results (2.11) and (2.12)
for ke conjugate gradient method. There are, however, two significant differ-
#icen, First, there is the presence of the condition number &(V} of the matrix of
Sigenvectors. It is difficult to bound this quantity, but its presence is unavoidable
it polynomial bounds entailing the eigenvalues of F. Second, it is more difficult
10 devive an error bound for the GMRES iterates in a form that is as clean as




