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the tridiagonal matrix produced by the Lanczos algorithm, and (4.1) is identjeyl
to (2.30). '

Algorithm 4.1: THE GMRES METHOD
Choose u®, compute i@ = f — Fu'®, fy = @y, v =©
for k=1,2,... until Gk < T do
wgk+1) — Fv(k)
forl=1to kdo
R = (w%kﬂ),v(”)
k k
70 2w —
enddo
{k+1

Rrs1k = lef+l )"
1
v+ = i hie

Compute y(k) such that 3 = ”,6081 - H ky('")n is minimized,

where Hy = [hy,ligick+115i<k
enddo
u(k) =1 u(o) + ka(k)

To derive a Krylov subspace iteration for solving systems of equations, e
let u® e u® + Ki(F,r®). For the choice vl = r{® /8y, with G = ||¢i"]} s
in Algorithm 4.1, this is equivalent to

u® = u@ + Viy® (4.2

for some k-dimensional vector y*). But the first line of (4.1) can be rewritigm
as FVi = Viy1 H, and this implies that the residual satisfies

) = @ — AVy™® = Viens (.6031 - kay(k)) , (4.}

where e, = (1,0,...,0)T is the unit vector of size k. The vectors {v(¥)} e
pairwise mutually orthogonal, so that

5 = B = [[foer = ey ®]) (14

In particular, the residual of the iterate (4.2) with smallest Euclidean norim §
determined by the choice of y* that minimizes the expression on the right i
of (4.4).

This upper-Hessenberg least squares problem can be solved by transformin

H, into upper triangular form (%"), where Ry is upper triangular, using k-8
plane rotations (which are also applied to Gpey). Here, I?k contains ﬁ’k._l s

submatrix, so that in a practical implementation, Ry can be updated from fi4
Moreover, by an analysis similar to that leading to (2.37), it can be shown thit
|Ir®¥)|| is available at essentially no cost. Hence, a step of the GMRES algorithl




