ONVECTION-DIFFUSION
EMS

matrix arising from discretizatioy i
mmetric. To develop iterative sl
ose arising in other settings sucly ye pha
iscussed in Chapter 2 must ba nrlivpsiay
equations. In this chapter, we Ot Ty
Krylov subspace iteration for soneryl
ecific details for convection-diffusjy,
nd multigrid methods.

ilving a system Fu = f, where, for {hy
ts an arbitrary nonsymmetric mintyix
sitive-definite systems, the ATV
make it an effective iterative salutian
t the kth step, the energy norm of tlis
limensional Krylov space Kj(F. ¢l
x(F,r1®) with respect to the enetey
e: the number of arithmetic oplrition
pendent of the iteration count %. Tliks
; are fixed. Unfortunately, there nme
e to arbitrary nonsymmetric syatums
w subspace method for nomsymumele
one of them: it can retain optimility
as the number of iterations grows,
;ional work at each step but sperifich

e note that one way to apply Krylo
T is to simply create a symmetric s
the normal equations F7 Fu = Fif
ing the conjugate gradient method fo
arits some of the favorable features ol
ed is Kp(FTF, FTr®) and therefore
TF. For example, recall Theorem 24,
1e condition number of the coeffekant

necessary to use all previously constructed vectors {v(? }j-“:l in the computation.

KRYLOV SUBSPACE METHODS 167

. Since the condition number of FTF is the square of that of F, this
hat using CG in this way may be less effective than when it is applied
dlectly to gymmetric positive-definite systems. In our experience with problems
arising @ fiyid mechanics such as the convection—diffusion equation, this is
“h-.g;_l the ease; convergence of CG applied to the normal equations is slower
< lternative approaches designed to be applied directly to nonsymmetric
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I 1ot us consider instead iterative methods for systems with nonsymmetric

coufliient matrices that generate a basis for K (F, r(0). Effective strategies are
derived by exploiting the connection between algorithms for estimating eigen-
enlues of matrices {more precisely, for constructing nearly invariant subspaces
of matrices) and those for solving systems. This connection was introduced in
Section 2.4, where we established a relation between the conjugate gradient
winthiod and the Lanczos method for eigenvalues: the CG iterate is a linear com-
Linntinn of vectors generated by the Lanczos algorithm that constitute a basis for
Kl 1-1'31). Here we will show how generalizations and variants of the Lanczos
method for nonsymmetric matrices can be exploited in an analogous way.

411 OGMRES

Our:sturting point is the generalized minimum residual method (GMRES), defined
lielow. This algorithm, developed by Saad & Schultz [166], represents the stand-
ril spproach for constructing iterates satisfying an optimality condition. It is
durtved by replacing the symmetric Lanczos recurrence (2.29) with the variant
[t nonsymmetric matrices known as the Arnoldi algorithm.

Tis.show how this method works, we identify its relation to the Arnoldi
thethod for eigenvalue computation. Starting with the initial vector v(!}, the
it loop (on k) of Algorithm 4.1 constructs an orthonormal basis
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far 1hie Krylov space Ki(F, v(!?). To make v(*+1) orthogonal to Ky (F, v, it is

The construction in Algorithm 4.1 is analogous to the modified Gram-Schmidt
process for generating an orthogonal basis. Let Vi, = [v(U v . v(¥)] denote
the matrix containing v in its jth column, for j = 1,...,k, and let Hy =
thyl, 1 <1, < k, where entries of Hj, not specified in the Algorithm are zero.
This, Ay is an upper-Hessenberg matrix (i.e. hy; =0 for j < i — 1), and

FVk = Vka + hk+1.k [01 e JOJ v(k+1)]

Hy =VIFV;. (4.1)

The Arnoldi method for eigenvalues is to use the eigenvalues of Hy as estimates
_““‘ Lhvigs of F'. This technique is a generalization of the Lanczos method that
% tpplicable to nonsymmetric matrices. When F is symmetric, Hy reduces to




