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1 Introduction

In this section, we consider sparse storage for the jacobian matrix that arises in our treatment of the Navier
Stokes equations. Recall that, for both the time dependent and steady state cases, it is necessary to apply
Newton’s method in order to find a satisfactory approximate solution of the finite element equations.

The jacobian matrix is naturally sparse, and so it is of great advantage to determine a sparse storage
format suitable for this setting.

Given that a sparse format is to be used, it will also be necessary to determine an algorithm, whether
direct or iterative, that can be reliably applied to solve the resulting linear system. If a direct method is
used, then presumably it will require that the sparse storage format include additional storage for fill-in
entries.

2 The Problem Setting

We assume that we are solving the incompressible steady Navier-Stokes equations for velocity and pressure
over an arbitrary connected 2D domain. We assume that a set of nodes have been chosen, and a corresponding
set of 6-node triangular elements constructed, so that the entire region of interest is covered by the elements.

However, we assume that the mesh is “irregular”, in the sense that, because of geometric constraints or
other reasons, the size, shape, and connectivity of the elements varies somewhat. We mean to state that the
triangulation at hand is not, for instance, the regular tessellation of a simple square - in such special cases,
it is possible to write down beforehand the location of every node, the indices that make up each element,
and even the bandwidth of the jacobian matrix. Compare the images of the simple “square” region against
that of the “hex” region.

We also assume that each node has associated with it a set of variables, corresponding to unknown
coefficients in the finite element representation of a flow solution. We assume that every node has an
unknown velocity variable, while only nodes corresponding to triangle vertices have an unknown pressure
variable. (Nodes along the boundary are also assumed to satisfy this condition; boundary conditions are
treated in a way that formally creates corresponding unknowns.) We assume that all the unknowns have
been assigned unique indices.

We assume that, given the index of any node, we can look up its physical location, the number of
unknowns associated with the node, and the indices of those unknowns.

We assume that, given any element, we can look up the indices of the six nodes that make up that
element, as well as the order in which these nodes occur in the element.

3 Node and Variable Indices

In the finite element method, a scalar function f(x, y) is represented by constructing a set of basis functions
ψi(x, y), with local support, associated with the NodeNum mesh nodes. The appropriate coefficients ci are
then determined to yield a representation of the function:

f(x, y) =

NodeNum∑
i=1

ci ψi(x, y). (1)

For Navier Stokes calculations using the Taylor Hood element, there are several complications:

• the velocity is a vector function

• the pressure is approximated using only part of the mesh, namely, the nodes associated with vertices

• depending on the treatment of the boundary conditions and other constraints, the representation of a
function could require a more complex form in certain regions.
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Figure 1: The “square” region with an unstructured 6-node triangular mesh.

Figure 2: The “hex” region with an unstructured 6-node triangular mesh.
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For our particular applications:

• we treat the velocity as two component scalar functions U and V , thus, in a sense, we have two copies
of the basis function ψi.

• we generate a separate set φi of basis functions for the pressures P , using only the element vertices

• we are careful to treat boundary conditions and constraints in such a way that we preserve the simple
relationship between nodes and coefficients.

Let us suppose, then, that we have numbered the nodes. We now propose to number the variables, that
is, the undetermined coefficients associated with the two velocity components and the pressure. A natural
procedure is to consider each node in order of its index, and to generate new variable indices for the two or
three coefficients associated with that node. Unless the mesh is very regular, the resulting set of indices is
very difficult to set up in advance, or without going through such a step-by-step procedure.

For our simple square region. the resulting variable assignment is

Node U V P
1 1 2 3
2 4 5 ...
3 6 7 8
4 9 10 ...
5 11 12 13
6 14 15 ...
7 16 17 ...
8 18 19 ...
9 20 21 ...
10 22 23 ...
11 24 25 26
12 27 28 ...
13 29 30 31
14 32 33 ...
15 34 35 36
16 37 38 ...
17 39 40 ...
18 41 42 ...
19 43 44 ...
20 45 46 ...
21 47 48 49
22 50 51 ...
23 52 53 54
24 55 56 ...
25 57 58 59

4 A Simpler Case: The Poisson Equation

For the finite element treatment of Poisson’s equation, we begin by representing the scalar state function as
a linear combination of finite element basis functions u(x, y) =

∑N
i=1 ci φi(x, y) Each basis function φi(x, y)

is associated with a mesh node ni of the same index, and φi is nonzero only over elements which include ni
as one of the nodes.
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In formulating the Galerkin system for the coefficients ci, we end up with a series of algebraic equations
involving integrals involving products of basis functions, which can be reformulated as a set of linear equations
K ∗ c = f , where K is the stiffness matrix. If we concentrate on row i of this matrix, then we note that entry
Ki,j has the value

∫
Ω
∂φi

∂x
∂φj

∂x + ∂φi

∂y
∂φj

∂y d(Ω). Now we note that, if there is no element that contains both
nodes ni and nj , then the matrix entry Ki,j must be zero. To see this, regard the integral over the region as
a sum of integrals over elements. In each element that we consider, at least one of the two nodes does not
occur, hence the corresponding basis function is zero over the entire element, hence so are its derivatives,
making the integrand identically zero over the element. Hence the entire integral is zero, and the matrix
element is zero.

For Poisson’s equation, the geometry of the finite element mesh controls the zero structure of the stiffness
matrix. To get a vivid visual image of this sparsity, start with a plot of a mesh, choose any particular node
ni, and highlight the (few) elements that contain that node. The nonzero entries in row i can only occur in
locations corresponding to the other nodes included in those elements. All other entries must be zero.

5 Banded Matrix Techniques

The simple two dimensional storage of a full matrix seems a very natural scheme (although inefficient for our
large sparse problems). We understand that it is worth looking at other schemes for storing the matrix. But
even though these schemes can sometimes be described very simply in words, it can be surprisingly awkward
or laborious to correctly implement the corresponding storage scheme as a computer code.

Our ultimate aim is a fairly general sparse format, but before we get there, it is worth “practicing” by
considering the changes needed to go from a full storage matrix format to a standard general band matrix
format, such as the GB format used by the LINPACK factor and solve routines DGBFA and DGBSL, or
the corresponding LAPACK routines DGBTRF and DGBTRS.

We begin with a simple definition. We say a matrix is a banded matrix if there exist number ml and mu
such that, in every row i of the matrix, the only nonzero entries lie between columns i −ml and i + mu.
If ml and mu are the smallest possible values with this property, we call ml the lower bandwidth of the
matrix, mu the upper bandwidth of the matrix, and m = ml+1+mu the (total) bandwidth of the matrix.

Obviously, in a trivial sense, every matrix is banded. However, we are only interested in cases where the
bandwidth m is much less than the order n of the matrix. In such a case, we will see that the corresponding
finite element matrix can be stored using much less storage, and that Gauss elimination can be carried out
more rapidly.

5.1 Computing the Bandwidth

We presume that we have access to the array ElementNode(1:ElementOrder,1:ElementNum) which
lists, for each element, the indices of the associated nodes. For now, let us assume that we are working with
the Poisson equation; and that there is a 1-1 correspondence between nodes and variables; and that the
variable and node indices are equal.

For this simpler case, we can easily determine the pattern of nonzeros in the stiffness matrix. Starting
with the first element, simply examine the list of node indices, which might be (3, 12, 4). Since node 3
appears in an element with node 12, K(3, 12) will be nonzero, as will K(12, 3). In fact, we now have some
information about 3 rows of the matrix, in particular, that in row 3 we have nonzero entries at (3,3), (3,12),
(3,4), in row 4 we have (4,3), (4,4) and (4,12), and in row 12 we have (12,3), (12,4) and (12,12).

Of course, this is just a start. Each element we examine will give us more information like this, about
several rows of the matrix. It sounds like a very haphazard process, but as we examine each element, we
are sure to encounter every single nonzero entry of the matrix. Now the lower bandwidth ML is simply the
maximum value of I − J for all possible entries. So to compute it, we can simply examine every element,
as we suggested, compute the value of I − J for each pair of nodes in that element, and keep the maximum
value of this quantity that we observe. Similarly, if we compute J−I for every pair of nodes in each element,
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we get MU . Since these two quantities are equal, we can simply compute the maximum |I − J | that we
encounter.

Therefore, we have a simple procedure for computing the bandwidth in this case:
ML = 0 MU = 0 ...
For the Navier-Stokes equations, the procedure is similar. We still go from element to element, but now

we need to look not at the node indices themselves, but at the indices of the variables associated with each
node. Thus, in an element with 6 nodes, we will have 15 variables whose indices we need to retrieve, so that
we can compute their differences, keeping the maximum.

5.2 Banded Storage Formats

There are two related formats for storing the banded matrix which have an additional extremely important
property, namely, we can store a matrix in these formats, and carry out Gaussian elimination without every
needing to access a location of the full matrix that has not been set aside in the banded format of the matrix.
What we are talking about here is called fill in. In Gaussian elimination, we add multiples of one row to
another. Although our matrix is initially banded, you can see that the elimination process could easily
destroy the banded structure of the matrix. This would be a disaster, since we would then need to store
numbers for which we have not allocated any space.

The first format....
The second format allows us to carry out partial pivoting...
We will then consider the issue of determining the bandwidth, for a structured or unstructured mesh.

6 The Sparseness of the Equations

The Navier Stokes equations are nonlinear. In approximating these nonlinear differential equations, the finite
element method produces a set of nonlinear algebraic equations with the property that the corresponding
jacobian matrix is relatively sparse. In typical examples, sparseness may mean that each equation never
involves more than 45 variables, no matter how large the total number of variables N becomes.

Full storage of the matrix would require N2 entries. Simply storing the entries intelligently might only
require 45 ∗ N entries. If we can actually achieve a storage cost grows linearly with N , we can handle far
bigger problems than if our storage grows linearly. Thus, we must investigate and exploit the opportunity
that the inherent sparseness of the finite element equations is offering us.

Of course, the storage of the jacobian entries is not generally all that is required. At the very least, we
need not just the values, but some way of recording the indices associated with these values. Moreover, if
we are doing a traditional direct linear factorization and solution, we will surely need even more storage in
order to handle the inevitable fillin. Even so, we may find that the required storage still grows linearly with
N , making the investigation worth the effort.

6.1 The Simpler Case of Poisson’s Equation

To see why the jacobian matrix is sparse, it may be helpful to start with a simpler situation, in which we are
solving the scalar Poisson’s equation. Instead of a jacobian matrix, we work with the stiffness matrix, but
the story is essentially the same. The advantage of considering the Poisson equation is that we can ignore for
a moment the complications of having two state variables, (one a vector function), of having two separate
sets of basis functions, and of having to treat vertex nodes differently from midside nodes. None of those
details affect the sparseness argument in any interesting way, but they certainly confuse the analysis!

6.2 The Navier-Stokes Case

The same argument can be made, after a number of unimportant adjustments, to show that the jacobian
matrix of the finite element residual functions for the Navier Stokes equations is also sparse. Assuming we
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have explained how this sparseness arises in the simpler case of Poisson’s equation, we may now venture a
more detailed examination of exactly how sparse a typical row of the Navier Stokes jacobian might be.

Recall, then, that row i of the jacobian matrix is associated with some basis function, which we generically
denote ωi, and that this basis function, in turn, is associated with some node which we will denote ni.

Under the reasonable assumption that the mesh was created by starting with a logically rectangular mesh
and splitting each rectangle into two triangles, and splitting all the triangles along the same diagonal, then
the mesh will be extremely regular. In this case, it is not hard to verify the following facts, which may be
checked by referring to the figure of the mesh of the ”square region”. (But please don’t miss the point that
we are not talking here about a general unstructure mesh!)

If basis function ωi is associated with a vertex node ni:

• there are usually 6 (but never more) elements containing node ni

• there are usually a total of 19 (but never more) distinct nodes in these elements

• there are usually a total of 45 (but never more) basis functions or degrees of freedom associated with
these nodes. (38 velocity components and 7 pressures)

If basis function ωi is associated with a midside node ni:

• there are usually 2 (but never more) elements containing node ni

• there are usually a total of 9 (but never more) distinct nodes in these elements

• there are usually a total of 22 (but never more) basis functions or degrees of freedom associated with
these nodes. (18 velocity components and 4 pressures)

So this tells us that, for a typical structured mesh, no matter how big the region or how many nodes and
elements, or even how we number the nodes, elements, and variables, there are are most 45 nonzero entries
in each row of the Jacobian. (The actual number of nonzeros is somewhat less, since some of the equations
that could involve another variable don’t actually do so; in particular, the continuity equation).

Using a basically rectangular mesh is really for illustration. Even if the mesh is unstructured, it will
generally be the case that every row of the jacobian will be sparse. The only way to keep this from happening
requires an artificial arrangement, such as having many elements share a single node. Then, even if some
individual rows of the jacobian are not sparse (perhaps the number of entries in one row is a significant
fraction of N), it must be the case that in the larger sense, the whole jacobian is sparse (the total number
of entries is very small compared to N2.)

In short, typical finite element systems of equations, in which the basis functions are developed from the
mesh, will involve only local coupling of variables, therefore the stiffness matrix (for a linear problem) or the
jacobian matrix (for a nonlinear problem) will be sparse, so that it makes sense to seek an intelligent way of
handling sparse linear systems when working with finite element techniques.

7 Sparse Triplet Storage

There are many special storage formats for sparse matrices. One of the simplest schemes simply saves the
row, column and value of each nonzero entry in the matrix, and is known as the sparse triplet format.

Thus, the data associated with sparse triplet matrix storage might be

• N , the number of variables and equations;

• NZNUM , the number of nonzero entries in the matrix;

• IA(1 : NZNUM), JA(1 : NZNUM), A(1 : NZNUM), the row, index, column index, and value of
each nonzero matrix entry.
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Now suppose we are given the data associated with a sparse triplet matrix, and we are asked to retrieve
the value Ai,j . With no other information, we would have to examine each pair of values (IAk, JAk) for k
from 1 to NZNUM . This lookup can be very time-consuming, and there must be a better way. Since we
will surely be looking up every entry of the matrix, we must find a better system.

Suppose, then, that we rearrange the data so that the entries in column 1 come first, followed by the
entries in column 2, and so on. Then, at least, once we pass a certain point we will know we’ve gone too far.

We could do better. Since we’ve arranged our data by columns, we could keep track of where each column
begins, and jump there directly. That is, if we create a vector COL of length N + 1, and set the extra entry
COL(N + 1) to be equal to NZNUM + 1, then we will have the property that if we’re searching for matrix
entries in column J, we only have to look at entries k between COL(J) and COL(J + 1)− 1.

We still need to examine every entry in this range. But, we can do a little better if we also sort these
values by their row index. In that case, we can apply binary search to find the right row index very quickly.
These improvements lead to another sparse matrix storage format, to be discussed next.

8 Compressed Column Storage

Compressed column storage can be thought of as an optimized version of the sparse triplet format. We still
store the nonzero entries and their row indices as before, but we do not store the column indices. Instead, we
rely on the COL vector and the sorting of the data to implicitly give us the column information. Moreover,
we assume that the entries associated with each column have been ascending sorted by row.

Thus, the data associated with compressed column storage might be:

• N , the number of variables and equations;

• NZNUM , the number of nonzero entries in the matrix;

• COL(1 : N + 1), so that the entries for column J occur between COL(J) and COL(J + 1)− 1;

• ROW (1 : NZNUM), A(1 : NZNUM), the row index and the value of each nonzero matrix entry.

Note that the important thing about compressed column storage is not the slight savings in size, in
replacing JA(1 : NZNUM) by COL(1 : N + 1), but rather, the speed with which entries can be looked up.
In particular, if we want to know the value of the (I, J) entry of the matrix, the steps involved are as follows:

• Set KLO = COL(J) and KHI = COL(J + 1)− 1.

• Using binary search for efficiency, determine the value K satisfying KLO <= K <= KHI and
ROW (K) = I.

• The (I, J) entry of the matrix is stored in A(K).

The real work for a sparse matrix storage scheme is not in using the structure, but rather in setting it up.
On paper, this may seem easy: simply take all the nonzeros in the first column, followed by all the nonzeros
in the second column, and so on. But, particularly in the finite element case, this is not the proper way to
think about the problem.

The full matrix is never actually constructed. Instead, by examining each individual element of the mesh,
we discover that certain entries of the matrix are nonzero, and it is only after we have examined all of the
entries that we know the complete matrix structure. Moreover, a given entry may be accessed by many
elements, and thus we also face the problem of redundant information. Thus, it is worth while explaining in
a little detail how the seemingly simple operation of collapsing the full matrix into the sparse structure can
actually take place.
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Figure 3: A triangular region to be analyzed for variable adjacencies.

9 Building the Sparse Data Structures

Let us now suggest how, using information available in a typical finite element program, we can analyze
the elements one by one, determine the jacobian entries that must be nonzero by virtue of the geometry of
this element, put all this information into one list, and then process that list so that we can arrive at the
compressed column sparse storage format from which we may proceed with relative ease.

Again, we prefer to consider the related but simpler case of the stiffness matrix for the Poisson equation,
rather than the jacobian matrix of the Navier Stokes equations. As in previous discussions, the essential
and interesting features of the argument will be the same, but we can avoid the complications arising from
trying to deal with a vector variable and a scalar variable defined using separate basis functions.

So let us begin our considering by assuming that are given the raw data defining a mesh of quadratic
triangles in 2D:

• NodeNum, the number of nodes;

• NodeXY (2, NodeNum), the coordinates of the nodes;

• ElementNum, the number of elements;

• ElementNode(6, ElementNum), the indices of the nodes making up each element

As the following computations become fairly complicated, it may be helpful to fix a simple example, to
which we may refer. Unfortunately, even the seemingly tiny example shown here will end up showing a fair
amount of complexity. But working out the details for this example may help you to follow the algorithms,
and to be convinced that they will apply in the more general and humanly unfathomable cases.

Although we will not need to know the coordinates of the nodes in this section, we will suppose that for
the example problem, the NodeNum = 15 nodes have the following simple coordinates NodeXY :

and that the ElementNum = 4 elements have the following ElementNode array:
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Node X Y
1 0.0 0.0
2 0.0 0.5
3 0.0 1.0
4 0.0 1.5
5 0.0 2.0
6 0.5 0.0
7 0.5 0.5
8 0.5 1.0
9 0.5 1.5
10 1.0 0.0
11 1.0 0.5
12 1.0 1.0
13 1.5 0.0
14 1.5 0.5
15 2.0 0.0

Element N1 N2 N3 N4 N5 N6
1 1 10 3 6 7 2
2 12 3 10 8 7 11
3 3 12 5 8 9 4
4 10 15 12 13 14 11

9.1 Task One:Create the Element Neighbor Array

Our first task is to compute the element neighbor array

• ElementNeighbor(3, ElementNum), lists the neighboring element on each side of the given element,
or -1 if that is a boundary side.

You should think about this for a moment and agree that this array can be constructed entirely from the
information in ElementNode. For instance, let us suppose we are trying to find the neighbor of an element
along the side defined by vertex nodes labeled 17 and 99. We could simply examine the first three nodes
(the vertices) of every element, and look for a second occurrence of 17 and 99. If that occurs, we have found
the neighboring element, and if it does not, then we have encountered a boundary side.

We need to compute the ElementNeighbor array in a consistent, precise, and efficient way. We do so
in three steps:

• Construct a list of edges. For each triangle, write down three records, listing the nodes on an edge, the
index of the edge, and the index of the element. To make matching possible, always list the two nodes
in ascending order.

• Sort the edge list. Then if two elements share an edge (I, J), there will be two consecutive entries in
the edge list of the form (I, J, side1, element1) and (I, J, side2, element2).

• Process the edge list. Initialize all entries of ElementNeighbor to -1. Examine successive pairs of
records in the edge list. When you spot a pair of consecutive items whose first two entries match, note
that

ElementNeighbor(side1,element1) = element2

ElementNeighbor(side2,element2) = element1
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The array ElementNeighbor is now complete.
For our tiny example, we would have computed the following ElementNeighbor array:

Element E1 E2 E3
1 -1 2 -1
2 3 1 4
3 2 -1 -1
4 -1 -1 2

Note that we temporarily needed a work array to store 4 items for every element’s edge. It is always
useful to be able to know beforehand the size of such temporary arrays, so that the appropriate amount of
memory can be allocated. In this case, the size of the array is ElementNum∗3∗4 because, for each element,
we have 3 sides, and we are storing 4 items of information per side.

9.2 Task Two: Counting the Adjacencies and Setting the COL Vector

As we suggested just a moment ago, it is usually helpful, and sometimes absolutely necessary, to determine
the amount of memory needed for arrays that you create as you go in a computer program. Our goal is to
set up the adjacency information for this problem.

Since we haven’t actually counted the number of variables, let us first note that by examining the
ElementNode array, we can determine that nodes that appear in the first three entries are pressure nodes,
which have 3 variables associated with them, while the remaining nodes are velocity nodes which have only
2. If we make a temporary list of all the nodes, and then scan the ElementNode array, we can assign a 3
or a 2 to each node, and at the end, sum up these values to get the number of variables. (Of course, some
nodes will be encountered more than once, but, as long as this is a legal triangulation, a node will always
appear as only one kind of node or the other.

Thus, for our example, if we process each element in order, here is the state of our knowledge about the
number of variables per node:

Element 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1 +3 +2 +3 ? ? +2 +2 ? ? +3 ? ? ? ? ?
2 3 2 3 ? ? 2 2 +2 ? 3 +2 +3 ? ? ?
3 3 2 3 +2 +3 2 2 2 +2 3 2 3 ? ? ?
4 3 2 3 2 3 2 2 2 2 3 2 3 +2 +2 +3

and by summing, we discover that we have 36 variables, namely 15 horizontal velocities, 15 vertical
velocities, and 6 pressures.

There are many ways of assigning indices to the variables. One approach starts by listing all the horizontal
velocities, another starts by assigning all the variables associated with node 1. Careful numbering can make
a big difference if we are defining a banded matrix, but is of little importance for a sparse matrix.

Following the second numbering convention, we have the following relationship between nodes and vari-
ables for our tiny example.

We can store this information in a convenient way by creating three arrays, NodeUVariable, NodeVVari-
able, and NodePVariable.

Now we are going to need to set up a sparse matrix that is logically of order VariableNum. In order to
set up the sparse matrix, we need to count the number of nonzero entries that will occur. Each of these
nonzeros corresponds to a ”variable adjacency”, which is similar to the geometric adjacency of two nodes.
Here, we say that two variables are ”adjacent” if the nodes they are associated with both occur in some
triangle.
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Node U V P
1 1 2 3
2 4 5 -1
3 6 7 8
4 9 10 -1
5 11 12 13
6 14 15 -1
7 16 17 -1
8 18 19 -1
9 20 21 -1
10 22 23 24
11 25 26 -1
12 27 28 29
13 30 31 -1
14 32 33 -1
15 34 35 36

In our example, therefore, variable 1 and variable 16 are ”adjacent” because they are associated with
nodes 1 and 7, respectively, and these nodes both occur in triangle 1. However, variable 26 and variable 5
are not adjacent, because they are associated with nodes 11 and 2, which are never in the same triangle.

Now I repeat that we need to know a lot about this adjacency relationship, but to start with, we need
to know the number of adjacency relationships that exist. We will denote this number as ADJNUM, but
it will be equivalent to what is usually called NZNUM for sparse matrices, since it represents the number
of nonzero entries to be set aside.

It will turn out that as we count the adjacencies, we can also keep track of information that will allow
us to set up the sparse compressed column pointer array that we denoted by COL.

To do these tasks, we must consider every possible adjacency. This information is readily available,
implicitly, in the ELEMENTNODE and the NodeUVariable, NodeVVariable and NodePVariable arrays
that we just constructed.

The problem is that the adjacency of any pair of variables may be recorded just once, twice, or many
times, depending on the geometry of the mesh. Therefore, we have to go through the geometry information
very carefully, so that we examine all the adjacencies, but ignore multiplicities. Essentially, we only want to
count each adjacency the very first time we see it.

To do so, we proceed as follows. First, we set ADJNUM to 0. We also set up and zero out an array
COUNT of length VARIABLENUM. We will use this array to keep a little finer tally on the adjacencies.
Every time we find an adjacency, we will increment the overall counter ADJNUM, but we will also bump
up the value of COUNT for the two variables involved.

The first adjacency information to process is easy: every variable is presumed to be adjacent to itself. So
the VARIABLENUM entries of COL each go up by 1, and ADJNUM goes up by VARIABLENUM.

The next adjacency information states that each variable is adjacent to the other variables that share its
node. So we loop over the nodes. If the node is a pressure node, then the 3 variables at that node each add
2 adjacencies, so ADJNUM goes up by 6, and the 3 entries of COL each go up by 2. If the node is a velocity
node, the 2 variables each add 1 adjacency, so ADJNUM goes up by 2, and the 2 entries of COL go up by 1.

Now we must examine the adjacency information describing variables at different nodes. We proceed by
looping over each triangle. So assume we are now considering triangle T.

There are some adjacencies that are absolutely certain not to be duplicated. In particular, triangle T
is the only triangle in which it will be possible for the following adjacencies to occur: (N1,N5), (N2,N6),
(N3,N4). Therefore, these can be added to the data.

(Please note my shorthand here. I am referring to node adjacency, although I am ultimately interested in
variable adjacency. If two nodes are adjacent, then the variables at each node are to be considered pairwise
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adjacent. Therefore, when I say in shorthand that N1 is adjacent to N5, I am actually saying the the three
variables (U1,V1,P1) are each adjacent to the two variables (U5,V5), making for a total of 12 new adjacencies
of variables.)

All the other potential adjacencies involve nodes that share a side of the triangle. Because of that, the
adjacency could already have been encountered because, perhaps, we already processed the other triangle
that might share that side. Therefore, we consider the remaining data one edge at a time.

We suppose that triangle T has sides E1, E2, and E3. Sharing each side is a neighboring triangle, T1,
T2 and T3, whose index is recorded in ElementNeighbor. That index is -1 in the case where the edge is a
boundary edge.

We loop over the three edges. Edge 1 has the possible adjacencies of (N1,N2), (N1,N4) and (N2,N4).
Have we seen these adjacencies before? Only if the Edge 1 is not a boundary edge (T1 is not -1) AND if T1
is less than T (because we are processing the triangles in order. So if T1 was less than T, we’d have seen
edge E1 already when we worked on T1.) So we make the check, and if the data is new, we record it, and
update ADJNUM and COUNT.

Similarly, if Edge 2 is ”new”, then we record the adjacencies of (N2,N3), (N2,N5) and (N3,N5), and if
Edge 3 is ”new”, we record adjacencies of (N1,N3), (N1,N6), and (N3,N6).

We then move on to the next triangle, until we have exhausted them all.
This is a complicated process, but at the end we are guaranteed to have worked through the adjacency

information represented by ELEMENTNODE and recorded exactly once the adjacency of every variable.
Moreover, as long as we were careful to increment our COUNT vector correctly each time we added adja-

cencies, we can set the COL array needed by the sparse compressed column storage scheme: COL(VARIABLE)
is 1 plus the sum of COUNT(1:VARIABLE-1).

At the end of this task, the ElementNeighbor array has served its purpose, and may be discarded.

9.3 Task Three: Setting the ROW vector

We now go back and fill the entries of ROW...
And we can allocate A.
As mentioned before, if the mesh is fixed, then the sparsity structure does not change, and the sparse

matrix data structure only needs to be computed once.
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