
Notes on a 2D Thermal Model:

an Example for Matlab’s

Parallel Computing Toolbox

J.V. Burkardt (burkardt@vt.edu) E.M. Cliff (ecliff@vt.edu)
Interdisciplinary Center for Applied Mathematics

Virginia Tech
Blacksburg, VA 24061

March 31, 2010

1 Background

We develop a finite-element model for steady heat-conduction in two space
dimensions. This is the basis for a Matlab code illustrating the use of spmd-
mode to assemble the needed matrices and the use of codistributed-arrays
to solve the linear system.

2 A Mathematical Model

We consider steady heat conduction in a plane. The governing partial dif-
ferential equation is

∂

∂x

(
kx
∂T

∂x

)
+

∂

∂y

(
ky
∂T

∂y

)
+ F (x, y) = 0 , (x, y)∈Ω , (1)

where:

• Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ w}⊂ IR2,

• F (x, y) is a specified source term,

• kx > 0 (ky > 0) is the conductivity in the x direction (the y-direction).

1

Boundary conditions for our problem are:

∂T (x, 0)
∂y

=
∂T (x,w)

∂y
= 0 , (2)

kx
∂T (L, y)
∂x

= f(y) , (3)

kx
∂T (0, y)
∂x

= α(y) (T (0, y)− β(y)) . (4)

In the final (Robin) boundary condition we require that α(y) > 0.

3 Numerical Approximation

3.1 Spatial discretization

Our numerical solution of (1) is based on a weak formulation. We multiply
by a test function Ψ(x, y) and integrate over the spatial domain Ω:

∫
Ω

[
∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
T Ψ dω +

∫
Ω
F (x, y) Ψ dω = 0 . (5)

The 1st term in (5) is integrated by parts∫
Ω

[
∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
T Ψ dω

= −
∫

Ω
(k∇T · ∇Ψ) dω +

∫
∂Ω

(k∇T · n̂) Ψ dσ , (6)

where in the boundary integral, n̂ is an outward normal to the surface, and
the integration is in an anti-clockwise sense around the region Ω. Imposing
the specified boundary conditions (2 - 4), the boundary term in (6) evaluates
to ∫

∂Ω
(k∇T · n̂) Ψ dσ =

∫ w

0
f(y)Ψ(L, y) dy

−
∫ 0

w
α(y) [T (0, y)− β(y)] Ψ(0, y) dy . (7)

2

3.2 Galerkin Finite Element

We seek an approximate solution of the form

TN (x, y) =
N∑
=1

z Φ(x, y) . (8)

Substitute the approximation (8) into the weak-form and use for test func-
tions Ψ = Φı leads to:∑



z

∫
Ω

(k∇Φ · ∇Φı) dω −
∫

Ω
F (x, y) Φı dω

−

[∫ w

0
f(y)Φı(L, y) dy −

∫ 0

w
α(y)

(∑


zΦ(0, y)− β(y)

)
Φı(0, y) dy

]
= 0

for ı = 1, 2, ..., N . (9)

Gathering terms leads to

∑


[∫
Ω

(
k∇Φ · ∇Φı dω +

∫ 0

w
α(y) Φ(0, y) Φı(0, y) dy

)]
z

−
[∫

Ω
F (x, y)Φı dω

]
−
[∫ w

0
f(y)Φı(L, y) dy +

∫ 0

w
α(y)β(y)Φı(0, y) dy

]
= 0

for ı = 1, 2, ..., N . (10)

In matrix terminology
M z − F − b = 0 . (11)

3.2.1 Quadratic Functions on Triangular Elements

We define a set of x coordinates X = {0 = x1 < x2 < ... < x2`+1 = L}, a set
of y coordinates Y = {0 = y1 < y2 < ... < y2m+1 = w}, and impose a regular
((2`+ 1)× (2m+ 1)) grid on Ω (`,m ≥ 1). Using odd-labeled abscissa
values from X and the odd-labeled ordinate values from Y generate ` m
rectangles; diagonals divide these into 2 ` m global triangles. Figure 1
shows the case ` = 10, m = 6 (nx = 21, ny = 13).

A local computational triangle is shown in Figure 2. Note that the (local)
vertex points are numbered 1 - 3 in order as one traverses the edges of the

3

0 5 10 15 20
0

5

10

15

Figure 1: 21× 13 Grid

r

s

@
@

@
@

@
@

r
1

r6 r5
r3

r
4

r
2

Figure 2: Computational Triangle

triangle in counter-clockwise fashion. The edge-center points are similarly
numbered 4 - 6.

We construct six quadratic functions: three of these interpolate values
at vertex points (H1, H2, H3), and three interpolate values at the segment
center points (H4, H5, H6).

H1(r, s) = 1− 3r + 2r2 − 3s+ 4rs+ 2s2

H2(r, s) = −r + 2r2

H3(r, s) = −s+ 2s2

H4(r, s) = 4r − 4r2 − 4rs
H5(r, s) = 4rs
H6(r, s) = 4s− 4rs− 4s2

Figure 3 displays the shape of these local interpolating functions for the
vertex points (left) and the segment center points (right) [1, from p 139].

4

Figure 3: Basic Quadratic Functions

Figure 4: 5× 5 grid with labelled points & elements

4 Assembling the arrays

As a first step in assembling the arrays M,F,b (see equ’n 11), it’s necessary
to label the nodes (so we know which z component corresponds to which
node). Furthermore, it’s helpful to label the (triangular) elements.

For the nodes begin by noting that we have a structured (in fact, Carte-
sian) grid (see Figure 4). Begin with node 1 at the lower left. Node 2 is
immediately to the right and so on to node 5 at the far right at the bottom.
Node 6 is back at the left, just above node 1, and so on to node 25 at the
upper right.

For the triangles, note that we have ` rectangles across Ω (see Figure 4)

5

and that the diagonals divide these into 2 ` triangles. Beginning at the lower
left, we label the first ’row’ of triangles as elements 1, 2, ..., 2 `. The 2nd row
is similarly labelled, and so on to the last (2 `m).

Evaluating the matrix M and the vectors F and b requires integration
of the basis functions (and their gradients) along with the source function
F and boundary functions, over the region Ω and along its boundaries at
x = 0 and x = L. This is accomplished by decomposing Ω into triangular
regions, evaluating the appropriate integrals over the triangular regions and
summing the results.

4.1 Serial Implementation

We begin by describing the steps in a serial implementation (single-processor).

• Geometry Module:

– define x and y grids and assemble the node array (n nodes × 2)

– define element connectivity (which nodes are in each triangle)
e conn(n elements, 6)

– construct list(s) of elements with points on the left (right) bound-
ary

• Integration Module
(do for each element)

– identify nodes in the element and their global coordinates

– compute Gauss points and weights, evaluate the (six) shape func-
tions and their spatial derivatives at the Gauss points.

– evaluate the (6 × 6) matrix of integrals of the products of the
shape function (derivatives) over this element (M loc)

– evaluate the distributed source term at the Gauss points and
integrate the weighted integral of the shape functions over this
element (F loc)

– if the element contains node points on the left boundary, evaluate
the functions α(·) and β(·) at the Gauss points on the boundary,
and evaluate the (6 × 6) matrix of integrals of the products of the
shape function and α along the x = 0 boundary of this element
(M loc). Then evaluate the (6 × 1) matrix of integrals of the
products of the shape function and the α β product along the
x = 0 boundary for this element (b loc)

6

– if the element contains node points on the right boundary, eval-
uate the function f(·) at the Gauss points on the boundary, and
evaluate the (6 × 1) matrix of integrals of the products of the
shape function and the f along the x = L boundary for this
element (b loc)

– map the contributions from the local arrays ((6 × 6) and (6 ×
1)) to the global arrays M,F, and b ((n nodes × n nodes) and
(n nodes × 1)).

4.2 Parallel considerations

In the parallel implementation the matrix M and the vectors F and b are
codistributed. For the matrix M the columns are distributed so that each
lab has (about) n nodes/n labs columns (and n nodes rows). The matrix
M lab consists of the columns of M corresponding to nodes on this lab. The
vectors F lab (b lab) consists of the rows of F (b) corresponding to nodes
on this lab.

In the loop over the set of triangular elements, if the intersection of the
set of the nodes associated with the current element and the set of nodes
on the particular lab is empty, then simply fall through the loop. Figure 4
provides a depiction of the situation with 4 labs: each lab is responsible
for the grid points of a given color. lab 1 (green) has nodes 1 - 7. These
nodes appear in triangles 1 - 4, but not in triangles 5 - 8. Note, however,
that in this case the blue nodes appear in all eight triangles, so that lab 2
must evaluate integrals over all of the elements. Clearly, parallelism is not
useful for this (small) case.

5 Example Results

Example 1
We first consider a case with Ω = [0, 10] × [0, 20] with kx = ky = 1, and
F ≡ 0. On the right boundary we take f = 0, while on the left boundary we
take α = α̂ (a constant), β(y) = β̂ cos pπyw . In this case a standard separation
of variables analysis leads to a solution:

T ss(x, y) =
α̂β̂ cos pπyw cosh pπ(L−x)

w

α̂ cosh pπL
w + pπ

w sinh pπL
w

. (12)

Figure 5 compares surface plots of the analytic solution (5a) and the nu-
merical approximation on a 21 × 41 grid (5b). Figure 6 compares line

7

0
2

4
6

8
10

0

5
10

15

20
−5

0

5

xy

Tss

(a) Analytic Solution

0
2

4
6

8
10

0

5
10

15

20
−5

0

5

x

y

Tss

(b) 21× 41 grid

Figure 5: Surface Plot Solutions

0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

y

Tss

Analytic
Numerical

(a) x = 0

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y

Tss

Analytic
Numerical

(b) x = 2

Figure 6: Solutions at Two Values of x

plots of the analytic solution and the same numerical approximation along
lines at x = 0 (6a) at x = 2 (6b). It appears that the approximation
for the steady-state solution (at least) is quite good.

Example 2
For our second example we change Ω = [0, 10]× [0, 4] and introduce several
‘zones’ along the x = 0 boundary with the parameters α and β varying in
step fashion (see 4). Specifically, we have:

α(y) =


4 if 0.8 ≤ y ≤ 1.2
2 if 1.6 ≤ y ≤ 2.4
4 if 2.8 ≤ y ≤ 3.2
0 otherwise, and

8

0
2

4
6

8
10

0

1
2

3

4
10

15

20

25

30

 x y

 T

(a) 41× 21

0
2

4
6

8
10

0

1
2

3

4
10

15

20

25

30

 x
 y

 T

(b) 51× 51

Figure 7: Example 2 - Solution

β(y) =


35 if 0.8 ≤ y ≤ 1.2
35 if 2.8 ≤ y ≤ 3.2
0 otherwise.

On the right boundary we have:

k
∂T

∂x
|x=10 = 2 ,

whereas along the upper and lower boundaries we use (2). Figure 7 compares
the numerical results on a 41× 21 grid and a 51× 51 grid

References

[1] J.E. Akin, Finite Elements for Analysis and Design, Academic Press,
1994

9

