
Chapter 3

Abstract Formulation

The first step in a finite element approach is to write an appropriate weak or vari-
ational problem. In lieu of deriving existence and uniqueness results for each weak
problem we encounter, our strategy is to formulate a general weak problem and
prove existence and uniqueness for it. Then, as we encounter specific weak prob-
lems, we only need to show that each problem fits into the framework of the general
problem and satisfies any conditions required by our analysis of the general problem.
We repeat the procedure with the discrete weak problem, but, in addition, derive a
general error estimate. The tools introduced in the last chapter easily allow us to
formulate a general weak problem; the existence and uniqueness of its solution is
established through the Lax-Milgram theorem which is proved with the aid of the
Projection and the Riesz Representation theorems from Chapter ??.

The abstract weak problem which we study is posed on a general Hilbert
space, but when we look at specific examples we need to completely specify the
particular space. It turns out that the class of Hilbert spaces that are appropriate
is Sobolev spaces. Before studying the general problem, we introduce these spaces
and the concept of weak derivatives.

Not all weak problems we encounter fit into the framework of the general
problem introduced in this chapter. In a later chapter (see Chapter ??) we consider
an obvious generalization to this weak problem and in Chapter ?? we introduce a
so-called mixed weak problem. Consequently, by the completion of this book, we
plan to analyze several general weak problems which can handle a wide variety of
linear problems. Nonlinear problems are discussed in Chapter ??.

When we derived the weak formulation (see (??)) to our prototype example
in Chapter ??, we saw that it was equivalent to solving a corresponding minimiza-
tion problem. Not all variational problems have this corresponding Rayleigh-Ritz
formulation. In Section 3.4 we prove a result which gives conditions when the two
formulations are equivalent.
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38 Chapter 3. Abstract Formulation

3.1 Weak L
2 derivatives and Sobolev spaces

In this section we define the particular class of Hilbert spaces which we use as our
spaces of admissible functions; these spaces are called Sobolev spaces. We want to
generalize the concept of derivative to define what we refer to as a weak or general-
ized derivative and do it in such a way that if everything is “smooth enough” then
the classical and weak derivatives coincide. The concept of a weak derivative is an
extension of the classical concept in which maintains the validity of the integration
by parts formula or its analogue in higher dimensions. Our generalization allows
functions such as u(x) = |x| on [−1, 1] to have a derivative in the weak sense.

We use this weak derivative in our definition of Sobolev spaces, the particular
Hilbert spaces we need. We begin this section with some notation which simplifies
the exposition, follow with the definition of a weak derivative, and then introduce
Sobolev spaces with their associated norms and inner products.

As usual, let Ω be an open, connected subset of R
n and let x = (x1, x2, . . . , xn)

denote a general point in Ω. The set of all real-valued functions u(x) = u(x1, · · · , xn)
which are defined and continuous on Ω is denoted C(Ω) and the set of all continuous
functions having derivatives of order less than or equal to k continuous in Ω is
denoted Ck(Ω), k <∞. We also need the space C∞

0 which is the space of infinitely
differentiable functions which have compact support. A function φ has compact
suport if φ = 0 outside a closed and bounded subset of Ω; the support of a function
φ(x) generally refers to the closure of the set of all x for which φ(x) 6= 0.

To simplify the derivative notation we introduce the notation of a multi-index
α which is defined as an n-tuple of non-negative integers, i.e., α = (α1, α2, . . . , αn)
where αi, i = 1, . . . , n is a non-negative integer. We use the notation

|α| = α1 + α2 + · · · + αn .

In this way we can rewrite the partial differential operator as

Dα ≡
∂α1+α2+···+αn

∂xα1

1 ∂xα2

2 · · ·∂xαn
n

=
∂|α|

∂xα1

1 ∂xα2

2 · · ·∂xαn
n

.

For example, in R
1, α = α1 so that Dα denotes the ordinary differential operator;

for example, D2 = d2/dx2. For R
2, α = (α1, α2) and so for |α| = 1 we have the first

order partial differential operators D(1,0) = ∂/∂x1 and D(0,1) = ∂/∂x2. For |α| = 2
we have

D(2,0) =
∂2

∂x2
1

, D(0,2) =
∂2

∂x2
2

, and D(1,1) =
∂2

∂x1x2
.

Using this notation we can define Ck(Ω) as

Ck(Ω) = {u : Dαu ∈ C(Ω), |α| ≤ k} .

3.1.1 Weak derivatives

We now define the concept of the weak (or generalized or distributional) L2(Ω)
derivative of a function. Let u ∈ L2(Ω); we say that u has a derivative of order α
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in the weak L2-sense if there exists a function v ∈ L2(Ω) such that

∫

Ω

uDαφdΩ = (−1)|α|

∫

Ω

vφ dΩ (3.1)

holds for all φ ∈ C∞
0 (Ω).

To help us understand this definition we consider a specific case in R
1 where

Ω = (0, 1). Suppose φ(x) is a continuously differentiable function on Ω which
vanishes on the boundary of Ω, i.e., φ(0) = φ(1) = 0. Let u ∈ C1([0, 1]). Then

∫ 1

0

u
∂φ

∂x
dx = φu

∣

∣

1

0
−

∫ 1

0

φ
∂u

∂x
dx

and thus
∫ 1

0

u
∂φ

∂x
dx = −

∫ 1

0

φ
∂u

∂x
dx .

So the classical derivative ∂u/∂x can be viewed as a function v satisfying

∫ 1

0

u
∂φ

∂x
dx = −

∫ 1

0

φv dx . (3.2)

Conversely, if we find a function v satisfying (3.2) then it behaves like the derivative
when integrated against functions in C∞

0 (Ω). Note that (3.2) is just (3.1) where
|α| = 1 since Ω is a subset of R

1.
We conclude that the classical derivatives, if they exist and are continuous in

the usual sense, coincide with the weak derivatives. However, there are functions
which possess a weak L2-derivative but have no classical derivatives.

Example 3.1 We know that the function u(x) = |x| on Ω = (−1, 1) does not have
a classical derivative at x = 0; however it does have a generalized L2-derivative. To
see this, let

v(x) =

{

−1 for −1 < x ≤ 0
1 for 0 < x < 1 .

Clearly, v ∈ L2(Ω) and we claim that v(x) is the weak L2-derivative of u(x) = |x|.
To show this, we note that if φ ∈ C∞

0 (−1, 1) we have

−

∫ 1

−1

vφ dx =

∫ 0

−1

φ dx −

∫ 1

0

φ dx = −

∫ 0

−1

φ
d

dx
(−x) dx−

∫ 1

0

φ
d

dx
(x) dx

= −
[

φ(−x)
]0

−1
−
[

φx
]1

0
+

∫ 0

−1

(−x)φ′ dx+

∫ 1

0

xφ′ dx

=

∫ 1

−1

|x|φ′ dx =

∫ 1

−1

uφ′ dx

and thus (3.1) is satisfied with |α| = 1.
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There are functions in L2(Ω) which do not possess weak or classical deriva-
tives. The reader is referred to [Adams] for a complete exposition of generalized
derivatives.

We note that it can be proved that weak L2-derivatives are unique almost
everywhere; that is, unique except on a set of measure zero. For example, in
Example 3.1 we could have chosen the generalized L2-derivative to be

w(x) =

{

−1 for −1 < x < 0
1 for 0 ≤ x < 1 .

Note that w(x) and v(x) defined in Example 3.1 differ only at the point x = 0, i.e.,
on a set of measure zero.

3.1.2 Sobolev spaces

We are now ready to define the class of Hilbert spaces that we use to pose our weak
problems. The Sobolev space Hm(Ω) is the set of functions u ∈ L2(Ω) which possess
generalized (weak) L2-derivatives Dαu which are also in L2(Ω) for 0 ≤ |α| ≤ m;
i.e.,

Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for 0 ≤ |α| ≤ m } . (3.3)

Clearly, Hm(Ω) is a subspace of L2(Ω) and H0(Ω) = L2(Ω). On Hm(Ω) we define
the inner product

(u, v)m =
∑

|α|≤m

∫

Ω

DαuDαv dΩ

=
∑

|α|≤m

(Dαu,Dαv) ∀ u, v ∈ Hm(Ω) ,
(3.4)

where (·, ·) denotes the standard inner product on L2(Ω). Using this definition of
inner product, we define the norm on Hm(Ω) as

‖u‖m = (u, u)1/2
m =





∑

|α|≤m

‖Dαu‖2





1/2

∀ u ∈ Hm(Ω) , (3.5)

where ‖·‖ denotes the standard norm on L2(Ω). Clearly, ‖·‖0 is the standard L2(Ω)
norm so in the sequel we denote the L2-norm by ‖·‖0.

The following result guarantees thatHm(Ω) is a complete inner product space;
for the proof, see [Adams].

Theorem 3.2. Hm(Ω), equipped with the inner product and norm defined in (3.4)
and (3.5), respectively, is a Hilbert space and thus a Banach space.

We make extensive use of the space H1(Ω); if Ω ⊂ R
1 then the norm on H1(Ω)

is explicitly given by

‖u‖1 =
(

‖u‖
2
0 + ‖u′‖

2
)1/2

(3.6)
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and if Ω ⊂ R
2 then the norm is explicitly given by

‖u‖1 =

(

‖u‖2
0 +

∥

∥

∥

∥

∂u

∂x1

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

∂u

∂x2

∥

∥

∥

∥

2

0

)1/2

. (3.7)

Note that by construction, for a function u ∈ Hm(Ω) we have

‖u‖0 ≤ ‖u‖1 ≤ ‖u‖2 · · · ≤ ‖u‖m .

We also make use of the Sobolev semi-norm on Hm(Ω) which is denoted by
| · | and defined by

|u|m =





∑

|α|=m

‖Dαu‖
2
0





1/2

∀ u ∈ Hm(Ω) . (3.8)

Thus for Ω ⊂ R
n the H1 semi-norm is explicitly given by

|u|1 =

(

n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

2

0

)1/2

∀ u ∈ H1(Ω) . (3.9)

Again by definition of the norms, we have that for u ∈ Hm(Ω)

|u|m ≤ ‖u‖m . (3.10)

Note that we are using the standard notation for partial derivative and Dα inter-
changeably; the context should make it clear if we are referring to the classical or
weak derivative.

We also make use of the constrained space H1
0 (Ω) which denotes all functions

in H1(Ω) which are zero on the boundary; i.e.,

H1
0 (Ω) = {u ∈ H1(Ω) : u|

∂Ω
= 0} . (3.11)

Formally, H1
0 (Ω) is defined as the completion of C∞

0 (Ω) with respect to the norm
‖·‖1 and it can be shown that it is a closed subspace of H1(Ω) consisting precisely of
those functions u ∈ H1(Ω) which almost everywhere satisfy u = 0 on the boundary
of Ω.

We comment that if Ω ⊂ R
n for n > 1, then Hm(Ω) can contain functions

which are not continuous. As an example, if n = 2 and Ω is the open unit disk
with center at the origin, consider the function u = (ln(1/r))k for k < 1/2 and
r = (x2

1 + x2
2)

1/2. It can be shown that u ∈ H1(Ω) but u is not continuous at the
origin. A result known as Sobolev’s Theorem (see [Adams]) gives the connection
between Hm(Ω) and Cm(Ω) for arbitrary m.

We conclude this section with the following result, known as the Poincaré
inequality, which is extremely useful in relating the L2-norm of certain functions
in H1(Ω) with their corresponding semi-norm. Recall that by the definition of the
Sobolev norm, it is always true that ‖u‖0 ≤ ‖u‖1. However, it is not obvious if the
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result holds when we replace the one-norm with the one semi-norm. It turns out
that it is true for functions in H1

0 (Ω) and even for functions which are zero on some
portion of their boundary. It is important to realize that this result does not, in
general, hold for all functions in H1(Ω).

Lemma 3.3. (Poincaré Inequality) Let u ∈ hone such that u = 0 on some
portion of the boundary of Ω. Then there exists a constant C depending on Ω such
that

‖u‖0 ≤ C

(

n
∑

i=1

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

2

0

)1/2

= C|u|1 . (3.12)

Note that the Poincaré inequality, along with (3.10) gives that on H1
0 (Ω) the H1-

norm and H1-seminorm are equivalent norms.

3.2 Formulation and analysis of a general weak
problem

In this section we use the tools developed in the last chapter to formulate a general
weak problem. We state and prove the Lax-Milgram theorem which is central to
the theory of the finite element method since it provides us with conditions which
guarantee the existence and uniqueness of the solution of our general weak problem.

Let V denote a Hilbert space, let A(·, ·) denote a bilinear form on V × V and
let F denote a linear functional on V . The general weak problem we consider is to

{ seek u ∈ V satisfying
A(u, v) = F (v) ∀ v ∈ V .

(3.13)

Many weak formulations that we encounter can easily be put into the general form
of (3.13) with appropriate choices for the Hilbert space, the bilinear form, and the
linear functional.

Example 3.4 Consider the simple two-point boundary value problem

−u′′(x) = sinπx 0 < x < 1 (3.14a)

and the boundary conditions

u(0) = 0 (3.14b)

and

u(1) = 0 . (3.14c)

In choosing the underlying Hilbert space for our weak formulation of (3.14), we
must require our solution to be in L2(0, 1) and to possess at least one weak L2-
derivative. In addition, we want to constrain our space so that we only consider
functions which satisfy the homogeneous Dirichlet boundary conditions. Thus we
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choose H1
0 (0, 1) to be the underlying Hilbert space in which we seek a solution u(x).

In particular, we seek a u ∈ H1
0 (0, 1) satisfying

∫ 1

0

u′v′ dx =

∫ 1

0

sinπxv dx ∀ v ∈ H1
0 (0, 1) . (3.15)

Clearly any solution of this two-point boundary value problem is also a solution
of (3.15). Now we can easily cast (3.15) into the general form of (3.13) if we let
V = H1

0 (0, 1),

A(u, v) =

∫ 1

0

u′v′ dx

and

F (v) =

∫ 1

0

sinπx v(x) dx = (sinπx, v) ,

where (·, ·) denotes the L2(0, 1) inner product. Clearly A(u, v) defined in this way
is a bilinear form on H1(0, 1) and F (v) is a linear functional on H1(0, 1) and thus
on H1

0 (0, 1).

If F is a bounded linear functional on the given Hilbert space V and the
bilinear form A(·, ·) is bounded, or equivalently, continuous on the space V and, in
addition, satisfies a property referred to as coercivity or equivalently as V-ellipticity,
then the Lax-Milgram theorem guarantees existence and uniqueness of the solution
of (3.13). Moreover, the theorem also provides a bound of the solution of the weak
problem in terms of the data. This is analogous to bounds obtained in PDE theory.

Theorem 3.5. (Lax-Milgram Theorem) Let V be a Hilbert space and let
A(·, ·) : V × V → R

1 be a bilinear form on V which satisfies

|A(u, v)| ≤M ‖u‖ ‖v‖ ∀ u, v ∈ V (3.16)

and
A(u, u) ≥ m ‖u‖

2
∀ u ∈ V , (3.17)

where M and m are positive constants independent of u, v ∈ V . Let F : V → R
1

be a bounded linear functional on V . Then there exists a unique u ∈ V satisfying
(3.13). Moreover

‖u‖ ≤
1

m
‖F‖ . (3.18)

Proof. In order to prove this result we begin by fixing a u ∈ V and demonstrating
that Q(v) = A(u, v) defines a bounded linear functional on V . We then apply the
Riesz representation theorem ( Theorem ??) to obtain a unique element û ∈ V such
that

Q(v) = A(u, v) = (v, û) ∀ v ∈ V .

This allows us to associate to each u ∈ V a unique û ∈ V . If we denote this
correspondence by û = Au we have

A(u, v) = (v,Au) ∀ u, v ∈ V . (3.19)
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We then demonstrate that A is a linear operator and that the range of A, denoted
R(A), is a closed subspace of V and finally that R(A) = V .

Once we have established these facts then we can establish the existence and
uniqueness by the following argument. Since F is a bounded linear functional on V
then the Riesz representation theorem guarantees the existence of a unique element
φ ∈ V such that F (v) = (φ, v) for all v ∈ V . If the R(A) = V , then there exists a
u ∈ V such that Au = φ. Hence there exists a u ∈ V such that

F (v) = (Au, v) = A(u, v) ∀ v ∈ V .

Uniqueness is shown in the standard way of choosing u1 6= u2 such that

A(u1, v) = A(u2, v) = F (v) ∀ v ∈ V .

Then we have that A(u1 − u2, v) = 0 for all v ∈ V and choosing v = u1 − u2, we
conclude that A(u1 − u2, u1 − u2) = 0. Using (3.17) we know that A(u1 − u2, u1 −

u2) ≥ m ‖u1 − u2‖
2

which implies the contradiction 0 ≥ m ‖u1 − u2‖
2
.

We now return to proving the claims necessary to complete the proof of exis-
tence. First, we see that Q(v) ≡ A(u, v) is a bounded linear functional on V . Lin-
earity immediately follows from the linearity of A(·, ·); the fact that it is bounded
follows from (3.16); i.e.,

|Q(v)| = |A(u, v)| ≤ C ‖u‖ ‖v‖

and thus ‖Q‖ ≤ C ‖u‖ < ∞. It is now required to show that the operator A is
linear. Given φ, ψ ∈ V

(v,A(αφ + βψ)) = A(αφ+ βψ, v) = αA(φ, v) + βA(ψ, v)

= αΦ(v) + βΨ(v) ∀ v ∈ V .

Using the same argument as we did for Q(v), we see Φ(v) and Ψ(v) are bounded
linear functionals on V and so we can apply the Riesz representation theorem and
the definition of A to write

Φ(v) = (v, φ̂) = (v,Aφ)

and similarly for Ψ(v). Combining these results we obtain

(v,A(αφ + βψ)) = α (v,Aφ) + β (v,Aψ) ∀ v ∈ V

and hence A(αφ + βψ) = αA(φ) + βA(ψ); i.e., linearity is proved. It remains
to show that R(A) is a closed subspace of V and, in fact, R(A) = V . The fact
that R(A) is a subspace is obvious from its definition; to show that it is closed we

choose a sequence {φ̂n} ∈ R(A) which converges to φ̂ ∈ V and demonstrate that

φ̂ ∈ R(A). Since φ̂n ∈ R(A) we can write φ̂n = Aφn for φn ∈ V ; we want to
demonstrate that {φn} is a Cauchy sequence in V . Now by the definition of A,
(v,Aφn) = A(φn, v) for all v ∈ V and thus A(φn − φm, v) = (v,A(φn − φm)) for all
v ∈ V . Choosing v = φn − φm and using (3.17) we have that

m ‖φn − φm‖2 ≤ a(φn − φm, φn − φm) = (φn − φm,A(φn − φm)) .
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Using the Cauchy-Schwartz inequality and the linearity of A we have ‖φn − φm‖ ≤
1
m ‖Aφn −Aφm)‖ = 1

N ‖φ̂n − φ̂m‖; we thus conclude that {φn} is a Cauchy sequence
in V . Since V is complete, there exists a φ ∈ V such that φn → φ. If we now show
that φ̂ = Aφ we have demonstrated that the limit of the sequence {φ̂n} is in R(A)
and thus R(A) is closed. To see this we note that by using the linearity of A(·, ·)
and (3.16) we have

|A(φn, v) −A(φ, v)| ≤M ‖φn − φ‖ ‖v‖ ∀ v ∈ V .

Thus A(φn, v) → A(φ, v) as n → ∞ for all v ∈ V . In terms of an inner product,

this yields (v,Aφn) → (v,Aφ) as n → ∞. But (Aφn, v) = (φ̂n, v) → (φ̂, v). So

(Aφn, v) → (φ̂, v) and (Aφn, v) → (v,Aφ) ; thus φ̂ = Aφ and the R(A) is closed.
To show that R(A) = V we assume that R(A) ⊂ V ; i.e., there exists a z ∈ R(A)⊥.
This implies (z, v̂) = 0 for all v̂ ∈ R(A); or equivalently for all v ∈ V , (z,Av) = 0.
In particular, if we set v = z we have A(z, z) = (z,Az) = 0, but from (3.17))

A(z, z) ≥ N ‖z‖
2

implying that z = 0, a contradiction.
To conclude the proof we must demonstrate (3.18)). Since A(u, u) = F (u) we

have that

m ‖u‖
2
≤ |A(u, u)| = |F (u)|

from which we have for u 6= 0

‖u‖ ≤
1

m

|F (u)|

‖u‖
.

Therefore

‖u‖ ≤ sup
u6=0

1

m

|F (u)|

‖u‖
=

1

m
‖F‖ .

3.3 Galerkin approximations

In the previous section we defined a general weak problem, (3.13), which is posed
on an infinite-dimensional Hilbert space V . We then stated and proved the Lax-
Milgram theorem which gave conditions guaranteeing existence and uniqueness of
its solution. Since in finite elements, our objective is to approximate the solution of
this weak problem, we want to state a general discrete weak problem, give conditions
which guarantee existence and uniqueness of its solution, and finally to bound the
error between the solution of (3.13) and the discrete solution.

We begin by letting {Sh}, 0 < h < 1, be a family of finite dimensional
subspaces of the Hilbert space V . Then the discrete problem corresponding to
(3.13) for a fixed h is to

{

seek uh ∈ Sh satisfying
A(uh, vh) = F (vh) ∀ vh ∈ Sh .

(3.20)
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If the conditions of the Lax-Milgram theorem hold over the whole space V , then
clearly they hold over any subspace Sh. Consequently, existence and uniqueness
of (3.20) is automatically guaranteed by the Lax-Milgram theorem. The following
result, known as Galerkin’s or Cea’s theorem, provides us with an error estimate for
∥

∥u− uh
∥

∥ where u ∈ V satisfies (3.13), uh ∈ Sh ⊂ V satisfies 3.20, and ‖ · ‖ denotes
the norm on V . Simply stated, this result says that the error in the solution to the
weak problem and its Galerkin approximation is less than or equal to a constant
(which is ≥ 1) times the best approximation to the solution of (3.13) in Sh.

Lemma 3.6. (Galerkin’s or Cea’s Lemma) Let A(·, ·) be a bilinear form on V
satisfying (3.16) and (3.17), and let F (·) be a bounded linear functional on V . Let
u be the unique solution of

A(u, v) = F (v) ∀ v ∈ V

guaranteed by the Lax-Milgram theorem. Let {Sh}, 0 < h < 1, be a family of finite
dimensional subspaces of V . Then for every h there exists a unique uh ∈ Sh such
that

A(uh, vh) = F (vh) ∀ vh ∈ Sh

and moreover,
∥

∥u− uh
∥

∥ ≤
M

m
inf

χh∈Sh

∥

∥u− χh
∥

∥ , (3.21)

where M,m are the constants appearing in the Lax-Milgram theorem and ‖·‖ denotes
the norm on V .

Proof. As indicated in the discussion preceding the theorem, the existence and
uniqueness of (3.20) is guaranteed by the Lax-Milgram theorem. In order to prove
our error estimate, we begin by establishing the so-called Galerkin orthogonality
condition. We note that (3.13) holds for all v ∈ V so, in particular, it holds for all
vh ∈ Sh ⊂ V ; i.e.,

A(u, vh) = F (vh) ∀ vh ∈ Sh .

Subtracting this expression from (3.20) we have that

A(u − uh, vh) = 0 ∀ vh ∈ Sh (3.22)

which says that the error u− uh is orthogonal to Sh. Using the coercivity property
of A(·, ·) given in (3.17) we have

m
∥

∥u− uh
∥

∥

2
≤ A(u − uh, u− uh) ; (3.23)

adding and subtracting an arbitrary element χh ∈ Sh and using the linearity of
A(·, ·) gives

A(u−uh, u−uh) = A(u−uh, u−χh+χh−uh) = A(u−uh, u−χh)+A(u−uh, χh−uh) .
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Now the orthogonality condition (3.22) tells us that the last term is zero since
χh − uh ∈ Sh. Combining this result with (3.23) and using the bound on A(·, ·)
given in (3.16) we have

m
∥

∥u− uh
∥

∥

2
≤ A(u − uh, u− χh) ≤M

∥

∥u− χh
∥

∥

∥

∥u− uh
∥

∥ ∀ χh ∈ Sh

and thus
∥

∥u− uh
∥

∥ ≤
M

m

∥

∥u− χh
∥

∥ ∀ χh ∈ Sh .

Taking the infimum over all χh ∈ Sh provides the final result.

As an immediate corollary to this result we have that if the family of sub-
spaces Sh has the property that the norm of u minus its best approximation in Sh

approaches zero as h→ 0 then we have convergence of uh to u as h→ 0.

Corollary 3.7. If {Sh}, 0 < h < 1, is a family of subspaces of V which satisfy

lim
h→0

inf
χh∈Sh

∥

∥u− χh
∥

∥ = 0 (3.24)

then
∥

∥u− uh
∥

∥→ 0 as h→ 0.

It is important to note that if wh is any element of Sh then

inf
χh∈Sh

∥

∥u− χh
∥

∥

1
≤
∥

∥u− wh
∥

∥

1
.

This is particularly useful when we want to bound the error
∥

∥u− uh
∥

∥

1
in terms of

powers of h. From the study of approximation theory, we know that bounds are
not readily available for the best approximation but bounds are easy to obtain for
particular elements of Sh such as the Sh-interpolant of u. Thus if we can bound
the error in u and its Sh-interpolant in terms of powers of h, then we have a useful
bound for

∥

∥u− uh
∥

∥

1
. We return to this when we consider particular examples in

the next chapter.
The discrete weak problem (3.20) results in a linear algebraic system of equa-

tions once a basis is chosen for the n-dimensional space Sh. In particular, let
{φi(x)}, i = 1, . . . , n be a basis for Sh. Then uh ∈ Sh can be written as a linear
combination of these basis vectors, i.e.,

uh =
n
∑

j=1

ξjφj(x)

and thus (3.20) becomes

a
(

n
∑

j=1

ξjφj(x), v
h
)

= F (v) ∀ vh ∈ Sh . (3.25)
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Now testing (3.25) against each vh ∈ Sh is equivalent to testing it against each
element in the basis for Sh so that we have

n
∑

j=1

ξja
(

φj(x), φi(x)
)

= F
(

φi(x)
)

i = 1, 2, . . . , n

or in matrix form Ac = b where A is an n× n matrix, c, b ∈ R
n with

Aij = A(φj , φi) , ci = ξi and bi = F (φi) . (3.26)

Properties of the bilinear form A(·, ·) are inherited by the matrix A. From numerical
linear algebra, we know that a symmetric, positive definite matrix is easily solved
by Cholesky factorization or by an iterative method. Consequently, it is worth-
while to note the conditions on A(·, ·) which guarantee that the resulting matrix is
symmetric, positive definite.

Lemma 3.8. Let A(·, ·) be a symmetric bilinear form defined on V × V . If A(·, ·)
satisfies the coercivity condition (3.17), then the matrix defined by (3.26) is sym-
metric and positive definite.

Proof. See exercises.

Of course we have not discussed choices of the finite dimensional subspaces
Sh; we address some simple choices in the next chapter when we consider examples
and Chapter ?? are devoted entirely to the study of finite element spaces. However,
it is important to keep in mind that of all possible choices for Sh, finite element
methods usually employ continuous piecewise polynomial spaces.

We have seen that if our bilinear form is symmetric and coercive, then the
resulting matrix is symmetric, positive definite. However, since the size of our
linear system can be quite large, especially in two and three dimensions, we would
also like to have a sparse, banded matrix. The choice of basis for Sh governs this
sparsity. In particular, we choose basis functions which have compact support, i.e.,
are zero outside of a compact set. So, for example, in one dimension we choose
basis functions which are nonzero on as few intervals as possible.

Example 3.9 Returning to (3.15), the variational formulation in Example 3.1, we
see that the corresponding discrete weak problem is to seek uh ∈ Sh ⊂ H1

0 (0, 1)
satisfying

∫ 1

0

∂uh

∂x

∂vh

∂x
dx =

∫ 1

0

sinπx vh dx ∀ vh ∈ Sh

and Galerkin’s lemma provides us with an error bound using the norm on H1(0, 1).
In particular we have that

∥

∥u− uh
∥

∥

1
≤ inf

χh∈Sh

∥

∥u− χh
∥

∥

1

where
∥

∥u− uh
∥

∥

1
=

(∫ 1

0

(u− uh)2 dx +

∫ 1

0

(
du

dx
−
duh

dx
)2 dx

)1/2

.
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3.4 The Rayleigh-Ritz problem

Recall from linear algebra that determining an x ∈ R
n satisfying the linear system

Ax = b, whereA is an n×n symmetric, positive definite matrix, b ∈ R
n, is equivalent

to solving the minimization problem

min
y∈Rn

(

1

2
yTAy − yT b

)

. (3.27)

See exercises. Although we rarely solve a linear system as a minimization problem,
the equivalence between the two problems is often useful. In this section we want to
show that an analogous relationship exists between the solution of the weak problem
(3.13) and an appropriate minimization problem; this minimization problem is often
called the Ritz problem or the Rayleigh-Ritz problem.

Consider the minimization problem

min
v∈V

J (v) (3.28)

where J : V → R is the functional defined by

J (v) =
1

2
A(v, v) − F (v) ∀ v ∈ V . (3.29)

It turns out that if A(·, ·) satisfies the hypotheses of the Lax-Milgram theorem and
is symmetric then solving the minimization problem (3.28) is equivalent to solving
the weak problem (3.13). Consequently, once we discretize a symmetric problem,
we have the choice of solving it as a system of linear algebraic equations or as a
minimization problem. The following result demonstrates the equivalence of the
two problems.

Theorem 3.10. Let A(·, ·) be a symmetric bilinear form satisfying the hypothe-
ses of the Lax-Milgram Theorem. Then the problem of finding a u satisfying the
weak problem (3.13) and finding a solution to the minimization problem (3.28) are
equivalent.

Proof. First assume that u ∈ V satisfies the weak problem (3.13) and let w ∈ V
be artibrary. Then using the definition (3.29) of J and the linearity of A(·, ·) and
F ·), we obtain

J (u+ w) =
1

2
A(u + w, u+ w) − F (u+ w)

=
1

2
A(u, u) +

1

2

(

A(w, u) +A(u,w)
)

+A(w,w) − F (u) − F (w)

= J (u) +A(u,w) − F (w) +A(w,w) ,

where in the last step we have used the symmetry of A(·, ·) and the definition of J .
Since w ∈ V and u satisfies (3.13), A(u,w)−F (w) = 0. Also since A(·, ·) is coercive,
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A(w,w) > 0 for w 6= 0. Therefore J (u + w) > J (u) and thus u is a minimizer of
(3.28).

Now assume that u minimizes J (v) for all v ∈ V . Then for any scalar σ and v ∈ V ,
u+ σv ∈ V and so J (u + σv) ≥ J (u). Then the function g(σ) = J (u + σv) has a
minimum at σ = 0. From calculus, we know that

dg

dσ

∣

∣

∣

σ=0
= 0 .

Since

dg

dσ
=

d

dσ

(

1

2
A(u+ σv, u + σv) − F (u+ σv)

)

=
d

dσ

(

1

2
A(u, u) + σA(u, v) +

1

2
σ2A(v, v) − F (u) − σF (v)

)

= A(u, v) + σA(v, v) − F (v)

where we have used the properties of A(·, ·) and the inner product. Evaluating
this derivative at σ = 0, we arrive at A(u, v) − F (v) = 0 for all v ∈ V , i.e., if u
minimizes (3.28) then u satisfies (3.13).



Exercises 51

Exercises

3.1. Let P h be the projection operator P h : V → Sh. Demonstrate that

∥

∥u− uh
∥

∥ ≤
M

m

∥

∥u− P hu
∥

∥ , (3.30)

where M,m are the constants appearing in the Lax Milgram Theorem 3.5.

3.2. Prove Lemma 3.8.

3.3. Show that on H1
0 (Ω) the H1-norm and the H1-seminorm are equivalent

norms.

3.4. Show that determining an x ∈ R
n satisfying the linear system Ax = b, where

A is an n × n symmetric, positive definite matrix, b ∈ R
n, is equivalent to

solving the minimization problem (3.27).

3.5. Give an example of a weak formulation for a linear two-point boundary value
problem on [0, 1] which is not equivalent to a Rayleigh-Ritz minimization
problem. Explain your reasoning.


